Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (4): 621-640.DOI: 10.1016/S1872-2067(12)60530-0
• Reviews • Previous Articles Next Articles
CHEN Jianwei, SHI Jianwen, WANG Xu, CUI Haojie, FU Minglai
Received:
2012-10-11
Revised:
2012-12-26
Online:
2013-04-23
Published:
2013-04-24
Supported by:
This work was supported by the National Nature Science Foundation of China (41001139), the National High Technology Research and Development Program of China (863 Program, 2012AA062606), the Key Project of Science and Technology Plan of Fujian Province (2012Y0066), and Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL201107SIC).
CHEN Jianwei, SHI Jianwen, WANG Xu, CUI Haojie, FU Minglai. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts[J]. Chinese Journal of Catalysis, 2013, 34(4): 621-640.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(12)60530-0
[1] Armaroli N, Balzani V. Angew Chem, Int Ed, 2007, 46: 52 [2] Davis S J, Caldeira K, Matthews H D. Science, 2010, 329: 1330 [3] Liu J G, Diamond J. Nature, 2005, 435: 1179 [4] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269 [5] Chen X B, Liu L, Peter Y Y, Mao S S. Science, 2011, 331: 746 [6] Zou Z G, Ye J H, Sayama K, Arakawa H. Nature, 2001, 414: 625 [7] Liu Q, Zhou Y, Kou J H, Chen X Y, Tian Z P, Gao J, Yan S C, Zou Z G. J Am Chem Soc, 2010, 132: 14385 [8] Fujishima A, Honda K. Nature, 1972, 238: 37 [9] Chong M N, Jin B, Chow C W K, Saint C. Water Res, 2010, 44: 2997 [10] Khan S U M, Al-Shahry M, Ingler W B J. Science, 2002, 297: 2243 [11] Justicia I, Ordejon P, Canto G, Mozos J L, Fraxedas J, Battiston G A, Gerbasi R, Figueras A. Adv Mater, 2002, 14: 1399 [12] Nhut J M, Pesant L, Tessonnier J P, Winé G, Guille J, Pham-Huu C, Ledoux M-J. Appl Catal A, 2003, 254: 345 [13] Shi J W, Zheng Ji T, Wu P, Ji X J. Catal Commun, 2008, 9: 1846 [14] Geim A K, Novoselov K S. Nat Mater, 2007, 6: 183 [15] Li X, Zhao W F, Chen G H. Mater Rev (李旭, 赵卫峰, 陈国华. 材料导报), 2008, 22(8): 48 [16] Oh W C, Chen M L, Cho K Y, Kim C Y, Meng Z, Zhu L. Chin J Catal (催化学报), 2011, 32: 1577 [17] Zhao H M, Su F, Fan X F, Yu H T, Wu D, Quan X. Chin J Catal (赵慧敏, 苏芳, 范新飞, 于洪涛, 吴丹, 全燮. 催化学报), 2012, 33: 777 [18] Wang L, Pan Y T. New Carbon Mater (王丽, 潘云涛. 新型炭材料), 2010, 25: 401 [19] Xiang Q J, Yu J G, Jaroniec M. Chem Soc Rev, 2012, 41: 782 [20] Zhang N, Zhang Y H, Xu Y J. Nanoscale, 2012, 4: 5792 [21] Zhang H, Lv X J, Li Y M, Wang Y, Li J H. ACS Nano, 2010, 4: 380 [22] Gao E P, Wang W Z, Shang M, Xu J H. Phys Chem Chem Phys, 2011, 13: 2887 [23] Neppolian B, Bruno A. Ultrason Sonochem, 2012, 19: 9 [24] Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. J Am Chem Soc, 2011, 133: 10878 [25] Wu J L, Shen X P, Jiang L, Wang K, Chen K M. Appl Surf Sci, 2010, 256: 2826 [26] Wang P, Zhai Y M, Wang D J, Dong S J. Nanoscale, 2011, 3: 1640 [27] Ding S J, Chen J S, Luan D Y, Boey F Y C, Madhavi S, Lou X W. Chem Commun, 2011, 47: 5780 [28] Shen J F, Shi M, Yao B, Ma H W, Li N, Ye M X. Nano Res, 2011, 4: 795 [29] Zou R J, Zhang Z Y, Yu L, Tian Q W, Chen Z G, Hu J Q. Chem Eur J, 2011, 17: 13912 [30] Guo J J, Zhu S M, Chen Z X, Li Y, Yu Z Y, Liu Q L, Li J B, Feng C L, Zhang D. Ultrason Sonochem, 2011, 18: 1082 [31] Liu J C, Liu L, Bai H W, Wang Y J, Sun D D. Appl Catal B, 2011, 106: 76 [32] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487 [33] Liang Y T, Vijayan B K, Gray K A, Hersam M C. Nano Lett, 2011, 11: 2865 [34] Zhang W L, Choi H J. Chem Commun, 2011, 47: 12286 [35] Nguyen-Phan T-D, Pham V H, Shin E W, Pham H-D, Kim S, Chung J S, Kim E J, Hur S H. Chem Eng J, 2011, 170: 226 [36] Xu T G, Zhang L W, Zhu Y F. Appl Catal B, 2011, 101: 382 [37] Paek S M, Yoo E J, Honma I. Nano Lett, 2009, 9: 72 [38] Mukherji A, Seger B, Lu G Q, Wang L Z. ACS Nano, 2011, 5: 3483 [39] Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R. J Am Chem Soc, 2011, 133: 11054 [40] Ng Y H, Iwase A, Bell N J, Kudo A, Amal R. Catal Today, 2011, 164: 353 [41] Zhang Q, He Y Q, Chen X G, Hu D H, Li J L, Ji L L, Yin T. Chin Sci Bull (张琼, 贺蕴秋, 陈小刚, 胡栋虎, 李林江, 季伶俐, 尹婷. 科学通报), 2010, 55: 620 [42] Jiang B J, Tian C G, Zhou W, Wang J Q, Xie Y, Pan Q J, Ren Z Y, Dong Y Z, Fu D, Han J L, Fu H G. Chem Eur J, 2011, 17: 8379 [43] Zhang J T, Xiong Z G, Zhao X S. J Mater Chem, 2011, 21: 3634 [44] Li B J, Cao H Q. J Mater Chem, 2011, 21: 3346 [45] Du J, Lai X Y, Yang N L, Zhai J, Kisailus D, Su F B, Wang D, Jiang L. ACS Nano, 2011, 5: 590 [46] Lambert T N, Chavez C. A, Hernandez-Sanchez B, Lu P, Bell N S, Ambrosini A, Friedman T, Boyle T J, Wheeler D R, Huber D L. J Phys Chem C, 2009, 113: 19812 [47] Li N, Liu G, Zhen C, Li F, Zhang L L, Cheng H M. Adv Funct Mater, 2011, 21: 1717 [48] Du D, Liu J, Zhang X Y, Cui X L, Lin Y H. J Mater Chem, 2011, 21: 8032 [49] Meng X B, Geng D S, Liu J, Li R Y, Sun X L. Nanotechnology, 2011, 22: 165602 [50] Wang W G, Yu J G, Xiang Q J, Cheng B. Appl Catal B, 2012, 119-120: 109 [51] Yoo D H, Cuong T V, Luan V H, Khoa N T, Kim E J, Hur S H, Hahn S H. J Phys Chem C, 2012, 116: 7180 [52] Ren Z, Kim E, Pattinson S W, Subrahmanyam K S, Rao C N R, Cheetham A K, Eder D. Chem Sci, 2012, 3: 209 [53] Lightcap I V, Kosel T H, Kamat P V. Nano Lett, 2010, 10: 577 [54] Kamat P V. J Phys Chem Lett, 2011, 2: 242 [55] Wang P, Zhai Y, Wang D, Dong S. Nanoscale, 2011, 3: 1640 [56] Bell N J, Yun, H N, Du A J, Coster H, Smith S C, Amal R. J Phys Chem C, 2011, 115: 6004 [57] Liang Y Y, Wang H L, Casalongue H S, Chen Z, Dai H J. Nano Res, 2010, 3: 701 [58] Ng Y H, Lightcap I V, Goodwin K, Matsumura M, Kamat P V. J Phys Chem Lett, 2010, 1: 2222 [59] Zhou K F, Zhu Y Y, Yang X L, Jiang X, Li C Z. New J Chem, 2011, 35: 353 [60] Liu J H, Wang Z C, Liu L W, Chen W. Phys Chem Chem Phys, 2011, 13: 13216 [61] Liu J C, Bai H W, Wang Y J, Liu Z Y, Zhang X W, Sun D D. Adv Funct Mater, 2010, 20: 4175 [62] Chen C, Cai W M, Long M C, Zhou B X, Wu Y H, Wu DY, Feng Y J. ACS Nano, 2010, 4: 6425 [63] Kim C H, Kim B H, Yang K S. Carbon, 2012, 50: 2472 [64] Khalid N R, Hong Z L, Ahmed E, Zhang Y W, Chan H, Ahmad M. Appl Surf Sci, 2012, 258: 5827 [65] Zhang X F, Quan X, Chen S, Yu H T. Appl Catal B, 2011, 105: 237 [66] Sun Y F, Qu B Y, Liu Q, Gao S, Yan Z X, Yan W S, Pan B C, Wei S Q, Xie Y. Nanoscale, 2012, 4: 3761 [67] Min Y L, Zhang K, Chen Y C, Zhang Y G. Sep Purif Technol, 2012, 86: 98 [68] Xu T G, Zhang L W, Cheng H Y, Zhu Y F. Appl Catal B, 2011, 101: 382 [69] Lü X J, Fu W F, Chang H X, Zhang Hao, Cheng J S, Zhang G J, Song Y, Hu C Y, Li J H. J Mater Chem, 2012, 22: 1539 [70] Mou Z G, Dong Y P, Li S J, Du Y K, Wang X M, Yang P, Wang S D. Int J Hydrogen Energy, 2011, 36: 8885 [71] Min S, Lu G. J Phys Chem C, 2011, 115: 13938 [72] Zhang X Y, Li H P, Cui X L. Chin J Inorg Chem (张晓艳, 李浩鹏, 崔晓莉. 无机化学学报), 2009, 25: 1903 [73] Jia L, Wang D H, Huang Y X, Xu A W, Yu H Q. J Phys Chem C, 2011, 115: 11466 [74] Ng Y H, Iwase A, Kudo A, Amal R. J Phys Chem Lett, 2010, 1: 2607 [75] Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R. J Am Chem Soc, 2011, 133: 11054 [76] Hou J G, Wang Z, Kan W B, Jiao S Q, Zhu H M, Kumar R V. J Mater Chem, 2012, 22: 7291 [77] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575 [78] Hoffman M R, Moss J A, Baum M M. Dalton Trans, 2011, 40: 5151 [79] Liang Y T, Vijayan B K, Gray K A, Hersam M C. Nano Lett, 2011, 11: 2865 [80] Tu W G, Zhou Y, Liu Q, Tian Z P, Gao J, Chen X Y, Zhang H T, Liu J G, Zou Z G. Adv Funct Mater, 2012, 22: 1215 [81] Akhavan O, Choobtashani M, Ghaderi E. J Phys Chem C, 2012, 116: 9653 [82] Yang N L, Zhai J, Wang D, Chen Y S, Jiang L. ACS Nano, 2010, 4: 887 [83] Fan J J, Liu S W, Yu J G. J Mater Chem, 2012, 22: 17027 [84] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angew Chem, Int Ed, 2010, 49: 3014 [85] Qiu J X, Zhang P, Ling M, Li S, Liu P, Zhao H J, Zhang S Q. ACS Appl Mater Interfaces, 2012, 4: 3636 [86] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2011, 5: 7426 [87] Zhang N, Zhang Y H, Pan X Y, Fu X Z, Liu S Q, Xu Y J. J Phys Chem C, 2011, 115: 23501 [88] Zhang Y H, Zhang N, Tang Z R, Xu Y J. Phys Chem Chem Phys, 2012, 14: 9167 [89] Zhang N, Zhang Y H, Pan X Y, Yang M Q, Xu Y J. J Phys Chem C, 2012, 116: 18023 [90] Liang Y T, Vijayan B K, Lyandres O, Gray K A, Hersam M C. J Phys Chem Lett, 2012, 3: 1760 [91] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2010, 4: 7303 [92] Kamat P V. J Phys Chem Lett, 2012, 3: 663 |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[7] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[8] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[9] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[14] | Jinpeng Li, Jie Chen, Qingshu Zheng, Bo Tu, Tao Tu. Magnetic core-shell composites accessed by coordination assembly boost catalytic CO2 valorization [J]. Chinese Journal of Catalysis, 2023, 48(5): 258-266. |
[15] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||