Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (10): 1905-1913.DOI: 10.1016/S1872-2067(12)60672-X
• Articles • Previous Articles Next Articles
Lucie Smolákováa, Šárka Botkováa, Libor Čapeka, Peter Priecela, Agnieszka Sołtyseka, Martin Kouta, Lenka Matějováb
Received:
2013-06-12
Revised:
2013-07-24
Online:
2013-09-29
Published:
2013-09-29
Contact:
Libor Čapek
Lucie Smoláková, Šárka Botková, Libor Čapek, Peter Priecel, Agnieszka Sołtysek, Martin Kout, Lenka Matějová. Precursors of active Ni species in Ni/Al2O3 catalysts for oxidative dehydrogenation of ethane[J]. Chinese Journal of Catalysis, 2013, 34(10): 1905-1913.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(12)60672-X
[1] Wang R, Li Y H, Shi R H, Yang M M. J Mol Catal A, 2011, 344: 122 [2] Abello S, Verboekend D, Bridier B, Pérez-Ramírez J. J Catal, 2008, 259: 85 [3] Hu S H, Xue M W, Chen H, Sun Y L, Shen J Y. Chin J Catal (催化学报 ), 2011, 32: 917 [4] Wang S B, Lu G Q M. Appl Catal B, 1998, 16: 269 [5] Ruckenstein E, Hu Y H. J Catal, 1996, 162: 230 [6] Hu X, Lu G X. Catal Commun, 2009, 10: 1633 [7] Salhi N, Boulahouache A, Petit C, Kiennemann A, Rabia C. Int J Hydrogen Energy, 2011, 36: 11433 [8] Akhmedov V M, Al-Khowaiter S H, Akhmedov E, Sadikhov A. Appl Catal A, 1999, 181: 51 [9] Ali M A, Tatsumi T, Masuda T. Appl Catal A, 2002, 233: 77 [10] Cui G Q, Wang J F, Fan H F, Sun X Y, Jiang Y, Wang S J, Liu D, Gui J Z. Fuel Process Technol, 2011, 92: 2320 [11] Cavani F, Ballarini N, Cericola A. Catal Today, 2007, 127: 113 [12] Savova B, Loridant S, Filkova D, Millet J M M. Appl Catal A, 2010, 390: 148 [13] Zhang X J, Gong Y Q, Yu G, Xie Y C. J Mol Catal A, 2002, 180: 293 [14] Heracleous E, Lemonidou A A. J Catal, 2006, 237: 162 [15] Wu Y, Chen T, Cao X D, Weng W Z, Wan H L. Chin J Catal (催化学报 ), 2003, 24: 403 [16] Li J H, Li R G, Wang C C, Huang C J, Weng W Z, Wan H L. Chin J Catal (催化学报), 2009, 30: 714 [17] Zhang X J, Liu J X, Jing Y, Xie Y C. Appl Catal A, 2003, 240: 143 [18] Capek L, Vanek L, Smolakova L, Bulanek R, Adam J. Collec Czech Chem Commun, 2008, 73: 1177 [19] Heracleous E, Lee A F, Wilson K, Lemonidou A A. J Catal, 2005, 231: 159 [20] Solsona B, Ivars F, Dejoz A, Concepcion P, Vazquez M I, Lopez Nieto J M. Top Catal, 2009, 52: 751 [21] Nakamura K, Miyake T, Konishi T, Suzuki T. J Mol Catal A, 2006, 260: 144 [22] Sakitani K, Nakamura K, Ikenaga N, Miyake T, Suzuki T. J Jpn Petrol Institute, 2010, 53: 327 [23] Smolakova L, Capek L, Botkova S, Kovanda F, Bulanek R, Pouzar M. Top Catal, 2011, 54: 1151 [24] Ren S B, Qiu J H, Wang C Y, Xu B L, Fan Y N, Chen Y. Chin J Catal (催化学报), 2007, 28: 651 [25] Xiang L, Deng X Y, Jin Y. Scripta Mater, 2002, 47: 219 [26] Uvarov V, Popov I. Mater Charact, 2007, 58: 883 [27] Boumaza A, Favaro L, Lédion J, Sattonnay G, Brubach J B, Berthet P, Huntz A M, Roy P, Tétot R. J Solid State Chem, 2009, 182: 1171 [28] Liu Q, Wang A Q, Wang X D, Zhang T. Microporous Mesoporous Mater, 2006, 92: 10 [29] Sun Z X, Zheng T T, Bo Q B, Du M, Forsling W. J Colloid Interface Sci, 2008, 319: 247 [30] Seki T, Ikeda S, Onaka M. Microporous Mesoporous Mater, 2006, 96: 121 [31] Lesaint C, Kleppa G, Arla D, Glomm W R, Oye G. Microporous Mesoporous Mater, 2009, 119: 245 [32] Ma C, Chang Y, Ye W, Shang W, Wang C. J Colloid Interface Sci, 2008, 317: 148 [33] Alberton A L, Souza M M V M, Schmal M. Catal Today, 2007, 123: 257 [34] Hao Z G, Zhu Q S, Jiang Z, Hou B L, Li H Z. Fuel Process Technol, 2009, 90: 113 [35] Poncelet G, Centeno M A, Molina R. Appl Catal A, 2005, 288: 232 [36] Villacampa J I, Royo C, Romeo E, Montoya J A, Del Angel P, Monzón A. Appl Catal A, 2003, 252: 363 [37] Zhang L Z, Wang X Q, Tan B, Ozkan U S. J Mol Catal A, 2009, 297: 26 [38] Jitianu M, Jitianu A, Zaharescu M, Crisan D, Marchidan R. Vib Spectrosc, 2000, 22: 75 [39] Kim P, Kim Y, Kim H, Song I K, Yi J. Appl Catal A, 2004, 272: 157 [40] Kis E, Marinkovic-Neducin R, Lomic G, Boskovic G, Obadovic D Z, Kiurski J, Putanov P. Polyhedron, 1998, 17: 27 [41] Priecel P, Kubicka D, Capek L, Bastl Z, Rysanek P. Appl Catal A, 2011, 397: 127 [42] Li C P, Chen Y W. Thermochimica Acta, 1995, 256: 457 [43] Zielinski J. Appl Catal A, 1993, 94: 107 [44] Merida-Robles J, Rodriguez-Castellon E, Jimenez-Lopez A. J Mol Catal A, 1999, 145: 169 [45] Li Y, Zhang B C, Xie X W, Liu J L, Xu Y D, Shen W J. J Catal, 2006, 238: 412 [46] Kovanda F, Rojka T, Bezdicka P, Jiratova K, Obalova L, Pacultova K, Bastl Z, Grygar T. J Solid State Chem, 2009, 182: 27 [47] Chu W L, Yang W S, Lin L W. Catal Lett, 2001, 74: 139 [48] Shan W J, Luo M F, Ying P L, Shen W J, Li C. Appl Catal A, 2003, 246: 1 [49] Wu Y, Yan A F, He Y M, Wu B F, Wu T H. Catal Today, 2010, 158: 258 [50] Yang R C, Li X G, Wu J S, Zhang X, Zhang Z H, Cheng Y F, Guo J T. Appl Catal A, 2009, 368: 105 [51] Twigg M V, Richardson J T. Appl Catal A, 2000, 190: 61 [52] Chang Y F, Somorjai G A, Heinemann H. Appl Catal A, 1993, 96: 305 [53] Li G H, Hu L J, Hill J M. Appl Catal A, 2006, 301: 16 [54] Slagtern A, Swaan H M, Olsbye U, Dahl I M, Mirodatos C. Catal Today, 1998, 46: 107 [55] Cesteros Y, Salagre P, Medina F, Sueiras J E. Appl Catal B, 2000, 25: 213 [56] Salagre P, Fierro J L G, Medina F, Sueiras J E. J Mol Catal A, 1996, 106: 125 [57] Iova F, Trutia A. Opt Mater, 2000, 13: 455 [58] Rotan M, Tolchard J, Rytter E, Einarsrud M A, Grande T. J Solid State Chem, 2009, 182: 3412 [59] Negrier F, Marceau E, Che M, de Caro D. C R Chimie, 2003, 6: 231 [60] Hong S T, Park D R, Yoo S J, Kim J D, Park H S. Res Chem Intermed, 2006, 32: 857 [61] Richardson J T. J Phys Chem, 1963, 67: 1377 [62] Sato T, Nakamura T, Ozawa F. J Appl Chem Biotechnol, 1975, 25: 583 [63] Flevet F, Flglarz M. J Catal, 1975, 39: 350 [64] Wang X Y, Zhao B Y, Jiang D E, Xie Y C. Appl Catal A, 1999, 188: 201 |
[1] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[2] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[3] | Gong Zhang, Wei-Song Zhang, Xiao-Yu Wang, Yang Yang, Ding-Wei Ji, Boshun Wan, Qing-An Chen. Ni-catalyzed unnatural prenylation and cyclic monoterpenation of heteroarenes with isoprene [J]. Chinese Journal of Catalysis, 2023, 49(6): 123-131. |
[4] | Hao Zhang, Yaqiong Su, Nikolay Kosinov, Emiel J. M. Hensen. Non-oxidative coupling of methane over Mo-doped CeO2 catalysts: Understanding surface and gas-phase processes [J]. Chinese Journal of Catalysis, 2023, 49(6): 68-80. |
[5] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[6] | Jingjing Li, Fengwei Zhang, Xinyu Zhan, Hefang Guo, Han Zhang, Wen-Yan Zan, Zhenyu Sun, Xian-Ming Zhang. Precise design of nickel phthalocyanine molecular structure: Optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 117-126. |
[7] | Hua Liu, Leilei Kang, Hua Wang, Qike Jiang, Xiao Yan Liu, Aiqin Wang. Ru single-atom catalyst anchored on sulfated zirconia for direct methane conversion to methanol [J]. Chinese Journal of Catalysis, 2023, 46(3): 64-71. |
[8] | Keran Wang, Lei Luo, Chao Wang, Junwang Tang. Photocatalytic methane activation by dual reaction sites co-modified WO3 [J]. Chinese Journal of Catalysis, 2023, 46(3): 103-112. |
[9] | Yiming Lei, Jinhua Ye, Jordi García-Antón, Huimin Liu. Recent advances in the built-in electric-field-assisted photocatalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2023, 53(10): 72-101. |
[10] | Qixian Xie, Dan Ren, Lichen Bai, Rile Ge, Wenhui Zhou, Lu Bai, Wei Xie, Junhu Wang, Michael Grätzel, Jingshan Luo. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes [J]. Chinese Journal of Catalysis, 2023, 44(1): 127-138. |
[11] | Hao Tian, Bingjun Xu. Oxidative co-dehydrogenation of ethane and propane over h-BN as an effective means for C-H bond activation and mechanistic investigations [J]. Chinese Journal of Catalysis, 2022, 43(8): 2173-2182. |
[12] | Yingjie Zhou, Tianfu Liu, Yuefeng Song, Houfu Lv, Qingxue Liu, Na Ta, Xiaomin Zhang, Guoxiong Wang. Highly dispersed nickel species on iron-based perovskite for CO2 electrolysis in solid oxide electrolysis cell [J]. Chinese Journal of Catalysis, 2022, 43(7): 1710-1718. |
[13] | Ernest Pahuyo Delmo, Yian Wang, Jing Wang, Shangqian Zhu, Tiehuai Li, Xueping Qin, Yibo Tian, Qinglan Zhao, Juhee Jang, Yinuo Wang, Meng Gu, Lili Zhang, Minhua Shao. Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1687-1696. |
[14] | Huining Wang, Anxiang Guan, Junbo Zhang, Yuying Mi, Si Li, Taotao Yuan, Chao Jing, Lijuan Zhang, Linjuan Zhang, Gengfeng Zheng. Copper-doped nickel oxyhydroxide for efficient electrocatalytic ethanol oxidation [J]. Chinese Journal of Catalysis, 2022, 43(6): 1478-1484. |
[15] | Peng Wu, Jinyan Zhang, Qianqian Chen, Wei Peng, Binju Wang. Theoretical perspective on mononuclear copper-oxygen mediated C-H and O-H activations: A comparison between biological and synthetic systems [J]. Chinese Journal of Catalysis, 2022, 43(4): 913-927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||