Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (4): 534-549.DOI: 10.1016/S1872-2067(19)63431-5
• Special Column for the Youth Innovation Promotion Association, Chinese Academy of Sciences • Previous Articles Next Articles
Zhirong Liua,c, Xin Yub, Linlin Lia,c,d
Received:
2019-09-27
Revised:
2019-11-10
Online:
2020-04-18
Published:
2019-12-12
Supported by:
CLC Number:
Zhirong Liu, Xin Yu, Linlin Li. Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field[J]. Chinese Journal of Catalysis, 2020, 41(4): 534-549.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63431-5
[1] W. Wang, M. O. Tade, Z. P. Shao, Chem. Soc. Rev., 2015, 44, 5371-5408. [2] N. Y. Cheng, J. Q. Tian, Q. Liu, C. J. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, X. P. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 6815-6819. [3] Y. AlSalka, L. I. Granone, W. Ramadan, A. Hakki, R. Dillert, D. W. Bahnemann, Appl. Catal. B, 2019, 244, 1065-1095. [4] T. T. Yao, X. R. An, H. X. Han, J. Q. Chen, C. Li, Adv. Energy Mater., 2018, 8, 1800210. [5] S. S. Zhu, D. W. Wang, Adv. Energy Mater., 2017, 7, 1700841. [6] S. Chandrasekaran, T. Nann, N. H. Voelcker, Nano Energy, 2015, 17, 308-322. [7] X. Yu, X. Han, Z. H. Zhao, J. Zhang, W. B. Guo, C. F. Pan, A. X. Li, H. Liu, Z. L. Wang, Nano Energy, 2015, 11, 19-27. [8] S. Rtimi, S. Giannakis, M. Bensimon, C. Pulgarin, R. Sanjines, J. Kiwi, Appl. Catal. B, 2016, 191, 42-52. [9] A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278. [10] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76-80. [11] H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S. J. Li, Z. H. Wang, J. S. Liu, X. C. Wang, Chem. Soc. Rev., 2014, 43, 5234-5244. [12] R. Marschall, Adv. Funct. Mater., 2014, 24, 2421-2440. [13] X. C. Ma, X. Wu, H. D. Wang, Y. C. Wang, J. Mater. Chem. A, 2018, 6, 2295-2301. [14] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev., 2016, 116, 7159-7329. [15] J. W. Fu, J. G. Yu, C. J. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503. [16] F. F. Abdi, L. H. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun., 2013, 4, 2195. [17] Y. Hou, F. Zuo, A. Dagg, P. Y. Feng, Nano Lett., 2012, 12, 6464-6473. [18] T. J. Yan, J. Tian, W. F. Guan, Z. Qiao, W. J. Li, J. M. You, B. B. Huang, Appl. Catal. B, 2017, 202, 84-94. [19] M. B. Tahir, M. Sagir, K. Shahzad, J. Hazard. Mater., 2019, 363, 205-213. [20] X. B. Meng, J. L. Sheng, H. L. Tang, X. J. Sun, H. Dong, F. M. Zhang, Appl. Catal. B, 2019, 244, 340-346. [21] X. Yu, N. Ren, J. C. Qiu, D. H. Sun, L. L. Li, H. Liu, Sol. Energy Mater. Sol. Cells, 2018, 183, 41-47. [22] X. Yu, Z. H. Zhao, D. H. Sun, N. Ren, J. H. Yu, R. Q. Yang, H. Liu, Appl. Catal. B, 2018, 227, 470-476. [23] X. Yu, Z. H. Zhao, N. Ren, J. Liu, D. H. Sun, L. H. Ding, H. Liu, ACS Sustainable Chem. Eng., 2018, 6, 11775-11782. [24] S. W. Cao, J. X. Low, J. G. Yu, M. Jaroniec, Adv. Mater., 2015, 27, 2150-2176. [25] . Kurnaravel, S. Mathew, J. Bartlett, S. C. Pillai, Appl. Catal. B, 2019, 244, 1021-1064. [26] S. Zhang, Y. Liu, P. C. Gu, R. Ma, T. Wen, G. X. Zhao, L. Li, Y. J. Ai, C. Hu, X. K. Wang, Appl. Catal. B, 2019, 248, 1-10. [27] J. X. Low, B. Z. Dai, T. Tong, C. J. Jiang, J. G. Yu, Adv. Mater., 2019, 31, 1802981. [28] X. Yu, Z. H. Zhao, D. H. Sun, N. Ren, L. H. Ding, R. Q. Yang, Y. C. Ji, L. L. Li, H. Liu, Chem. Commun., 2018, 54, 6056-6059. [29] G. S. Li, Z. C. Lian, W. C. Wang, D. Q. Zhang, H. X. Li, Nano Energy, 2016, 19, 446-454. [30] J. Li, X. Gao, Z. Z. Li, D. H. Wang, L. Zhu, C. Yin, Y. Wang, X. B. Li, Z. F. Liu, J. Zhang, C. H. Tung, L. Z. Wu, Adv. Funct. Mater., 2019, 29, 1808079. [31] H. D. Li, Y. H. Sang, S. J. Chang, X. Huang, Y. Zhang, R. S. Yang, H. D. Jiang, H. Liu, Z. L. Wang, Nano Lett., 2015, 15, 2372-2379. [32] X. N. Li, Z. Ju, F. Li, Y. Huang, Y. M. Xie, Z. P. Fu, R. J. Knize, Y. L. Lu, J. Mater. Chem. A, 2014, 2, 13366-13372. [33] H. X. Fu, R. E. Cohen, Nature, 2000, 403, 281-283. [34] D. Kan, L. Palova, V. Anbusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe, I. Takeuchi, Adv. Funct. Mater., 2010, 20, 1108-1115. [35] Z. L. Wang, Nano Today, 2010, 5, 540-552. [36] Y. Zhang, Y. Liu, Z. L. Wang, Adv. Mater., 2011, 23, 3004-3013. [37] C. Falconi, Nano Energy, 2019, 59, 730-744. [38] Y. Yang, W. X. Guo, Y. Zhang, Y. Ding, X. Wang, Z. L. Wang, Nano Lett., 2011, 11, 4812-4817. [39] Z. L. Wang, Adv. Mater., 2012, 24, 4632-4646. [40] C. F. Pan, M. X. Chen, R. M. Yu, Q. Yang, Y. F. Hu, Y. Zhang, Z. L. Wang, Adv. Mater., 2016, 28, 1535-1552. [41] Q. Yang, X. Guo, W. H. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, ACS Nano, 2010, 4, 6285-6291. [42] Y. Zhao, X. Huang, F. Gao, L. Zhang, Q. Tian, Z.-B. Fang, P. Liu, Nanoscale, 2019, 11, 9085-9090. [43] F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chem. Int. Ed., 2019, DOI:10.1002/anie.201901361. [44] W. Z. Wu, L. Wang, Y. L. Li, F. Zhang, L. Lin, S. M. Niu, D. Chenet, X. Zhang, Y. F. Hao, T. F. Heinz, J. Hone, Z. L. Wang, Nature, 2014, 514, 470-474. [45] M. H. Wu, J. T. Lee, Y. J. Chung, M. Srinivaas, J. M. Wu, Nano Energy, 2017, 40, 369-375. [46] Y. F. Cui, H. H. Sun, J. Briscoe, R. Wilson, N. Tarakina, S. Dunn, Y. P. Pu, Nanotechnology, 2019, 30, 255702. [47] H. W. Huang, S. C. Tu, C. Zeng, T. R. Zhang, A. H. Reshak, Y. H. Zhang, Angew. Chem. Int. Ed., 2017, 56, 11860-11864. [48] Y. K. Zhu, P. K. Jiang, Z. C. Zhang, X. Y. Huang, Chin. Chem. Lett., 2017, 28, 2027-2035. [49] D. F. Pang, X. T. Liu, X. He, C. Chen, J. Zheng, Z. G. Yi, J. Am. Ceram. Soc., 2019, 102, 3448-3456. [50] Z. Y. Gao, J. Zhou, Y. D. Gu, P. Fei, Y. Hao, G. Bao, Z. L. Wang, J. Appl. Phys., 2009, 105, 113707/1-113707/6. [51] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, Z. L. Wang, Nano Lett., 2009, 9, 1223-1227. [52] B. Y. Dai, Y. R. Yu, Y. K. Chen, H. M. Huang, C. H. Lu, J. H. Kou, Y. J. Zhao, Z. Z. Xu, Adv. Funct. Mater., 2019, 29, 1807934. [53] X. Cheng, Y. J. Zhang, Y. P. Bi, Nano Energy, 2019, 57, 542-548. [54] Z. R. Liu, L. W. Wang, X. Yu, J. Zhang, R. Q. Yang, X. D. Zhang, Y. C. Ji, M. Q. Wu, L. Deng, L. L. Li, Z. L. Wang, Adv. Funct. Mater., 2019, 1807279. [55] M. Trieloff, E. K. Jessberger, I. Herrwerth, J. Hopp, C. Fieni, M. Ghelis, M. Bourot-Denise, P. Pellas, Nature, 2003, 422, 502-506. [56] S. S. Singh, P. Pal, A. K. Pandey, J. Appl. Phys., 2015, 118, 204303. [57] L. F. Wang, M. R. Cho, Y. J. Shin, J. R. Kim, S. Das, J. G. Yoon, J. S. Chung, T. W. Noh, Nano Lett., 2016, 16, 3911-3918. [58] K. Maeda, ACS Appl. Mater. Interfaces, 2014, 6, 2167-2173. [59] M. Dahl, Y. D. Liu, Y. D. Yin, Chem. Rev., 2014, 114, 9853-9889. [60] X. Yu, J. Zhang, Z. H. Zhao, W. B. Guo, J. C. Qiu, X. N. Mou, A. X. Li, J. P. Claverie, H. Liu, Nano Energy, 2015, 16, 207-217. [61] T. Xia, W. Zhang, J. Murowchick, G. Liu, X. B. Chen, Nano Lett., 2013, 13, 5289-5296. [62] Z. Zhang, J. T. Yates, Chem. Rev., 2012, 112, 5520-5551. [63] K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater., 2009, 21, 2233-2239. [64] L. Li, P. A. Salvador, G. S. Rohrer, Nanoscale, 2014, 6, 24-42. [65] A. Kubacka, M. Fernandez-Garcia, G. Colon, Chem. Rev., 2012, 112, 1555-1614. [66] H. Petek, J. Zhao, Chem. Rev., 2010, 110, 7082-7099. [67] Z. Liang, C. F. Yan, S. Rtimi, J. Bandara, Appl. Catal. B, 2019, 241, 256-269. [68] J. Shi, M. B. Starr, H. Xiang, Y. Hara, M. A. Anderson, J. H. Seo, Z. Q. Ma, X. D. Wang, Nano Lett., 2011, 11, 5587-5593. [69] H. X. Li, Y. H. Yu, M. B. Starr, Z. D. Li, X. D. Wang, J. Phys. Chem. Lett., 2015, 6, 3410-3416. [70] X. Y. Xue, W. L. Zang, P. Deng, Q. Wang, L. L. Xing, Y. Zhang, Z. L. Wang, Nano Energy, 2015, 13, 414-422. [71] J. X. Feng, Y. Fu, X. S. Liu, S. H. Tian, S. Y. Lan, Y. Xiong, ACS Sustain. Chem. Eng., 2018, 6, 6032-6041. [72] J. Wu, N. Qin, D. H. Bao, Nano Energy, 2018, 45, 44-51. [73] E. B. Flint, K. S. Suslick, Science, 1991, 253, 1397-1399. [74] X. T. Pan, Q. Y. Wu, H. Y. Wang, S. Liu, B. L. Xu, H. Y. Liu, L. X. Bai, H. Wang, X. H. Shi, Adv. Mater., 2018, 30, e1800180. [75] L. F. Wang, S. H. Liu, Z. Wang, Y. L. Zhou, Y. Qin, Z. L. Wang, ACS Nano, 2016, 10, 2636-2643. [76] X. Y. Chen, L. F. Liu, Y. W. Feng, L. F. Wang, Z. F. Bian, H. X. Li, Z. L. Wang, Mater. Today, 2017, 20, 501-506. [77] Y. W. Feng, H. Li, L. L. Ling, S. Yan, D. L. Pan, H. Ge, H. X. Li, Z. F. Bian, Environ. Sci. Technol., 2018, 52, 7842-7848. [78] B. Y. Dai, C. H. Lu, J. H. Kou, Z. Z. Xu, F. L. Wang, J. Alloys Compd., 2017, 696, 988-995. [79] W. S. Tong, Y. H. Zhang, H. W. Huang, K. Xiao, S. X. Yu, Y. Zhou, L. P. Liu, H. T. Li, L. Liu, T. Huang, M. Li, Q. Zhang, R. F. Du, Q. An, Nano Energy, 2018, 53, 513-523. [80] C. F. Tan, W. L. Ong, G. W. Ho, ACS Nano, 2015, 9, 7661-7670. [81] X. Han, M. X. Chen, C. F. Pan, Z. L. Wang, J. Mater. Chem. C, 2016, 4, 11341-11354. [82] W. Z. Wu, Z. L. Wang, Nat. Rev. Mater., 2016, 1, 16031. [83] Y. H. Yu, X. D. Wang, Adv. Mater., 2018, 30, 1800154. [84] F. Mushtaq, X. Z. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B. J. Nelson, S. Pané, iScience, 2018, 4, 236-246. [85] M. Wang, B. Wang, F. Huang, Z. Lin, Angew. Chem. Int. Ed., 2019, 58, 7526-7536. [86] J. Wu, Q. Xu, E. Z. Lin, B. W. Yuan, N. Qin, S. K. Thatikonda, D. H. Bao, ACS Appl. Mater. Interfaces, 2018, 10, 17842-17849. [87] P. H. Wen, F. Y. Yao, D. W. Hu, J. J. Guo, Y. Z. Lan, C. C. Wang, X. G. Kong, Q. Feng, Mater. Design, 2018, 158, 5-18. [88] H. J. Liu, C. W. Du, M. Li, S. S. Zhang, H. K. Bai, L. Yang, S. Q. Zhang, ACS Appl. Mater. Inter., 2018, 10, 28686-28694. [89] Z. H. Zhao, J. Tian, Y. H. Sang, A. Cabot, H. Liu, Adv. Mater., 2015, 27, 2557-2582. [90] M. Q. Lyu, J. H. Yun, P. Chen, M. M. Hao, L. Z. Wang, Adv. Energy Mater., 2017, 7, 1602512. [91] X. H. Gao, H. B. Wu, L. X. Zheng, Y. J. Zhong, Y. Hu, X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 5917-5921. [92] X. J. Yuan, D. Floresyona, P. H. Aubert, T. T. Bui, S. Remita, S. Ghosh, F. Brisset, F. Goubard, H. Remita, Appl. Catal. B, 2019, 242, 284-292. [93] S. Y. Xu, L. M. Guo, Q. J. Sun, Z. L. Wang, Adv. Funct. Mater., 2019, 29, 1808737. [94] Y. Wu, Y. L. Wei, Q. Y. Guo, H. Xu, L. Gu, F. Y. Huang, D. Luo, Y. F. Huang, L. Q. Fan, J. H. Wu, Sol. Energy Mater. Sol. Cells, 2018, 176, 230-238. [95] C. Y. Zou, S. Q. Liu, Z. M. Shen, Y. Zhang, N. S. Jiang, W. C. Ji, Chin. J. Catal., 2017, 38, 20-28. [96] Y. Y. Wu, L. L. Zhang, Y. Z. Zhou, L. L. Zhang, Y. Li, Q. Q. Liu, J. Hu, J. Yang, Chin. J. Catal., 2019, 40, 691-702. [97] Y. Z. Zhang, X. L. Huang, J. Yeom, Nano-Micro Lett., 2019, 11, 11. [98] D. Y. Hong, W. L. Zang, X. Guo, Y. M. Fu, H. X. He, J. Sun, L. L. Xing, B. D. Liu, X. Y. Xue, ACS Appl. Mater. Interfaces, 2016, 8, 21302-21314. [99] Y. L. Liu, J. M. Wu, Nano Energy, 2019, 56, 74-81. [100] K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, P. Daszak, Nature, 2008, 451, 990-993. [101] C. Gradmann, Med. Hist., 2016, 60, 155-180. [102] M. I. Jacob, Genet. Eng. News, 1997, 17, 6. [103] E. Stokstad, Science, 2000, 287, 2391-2391. [104] D. B. Jack, Mol. Med. Today, 1996, 2, 499-502. [105] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Fems. Microbiol. Lett., 1985, 29, 211-214. [106] M. Salehi, A. Eshaghi, H. Tajizadegan, J. Alloys Compd., 2019, 778, 148-155. [107] P. A. Charpentier, C. Chen, K. Azhie, B. Grohe, M. A. Mumin, A. F. Lotus, P. Therrien, S. Mittler, Nanotechnology, 2019, 30, 085706. [108] S. S. Lucky, K. C. Soo, Y. Zhang, Chem. Rev., 2015, 115, 1990-2042. [109] X. J. Song, C. Liang, H. Gong, Q. Chen, C. Wang, Z. Liu, Small, 2015, 11, 3932-3941. [110] C. Liu, D. S. Kong, P. C. Hsu, H. T. Yuan, H. W. Lee, Y. Y. Liu, H. T. Wang, S. Wang, K. Yan, D. C. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm, Y. Cui, Nat. Nanotechnol., 2016, 11, 1098-1104. [111] Y. J. Li, Q. Q. Wang, H. X. Wang, J. Tian, H. Z. Cui, J. Colloid Interf. Sci., 2019, 537, 206-214. [112] S. A. Han, T. H. Kim, S. K. Kim, K. H. Lee, H. J. Park, J. H. Lee, S. W. Kim, Adv. Mater., 2018, 30, 1800342. [113] H. J. Jin, W. Y. Yoon, W. Jo, ACS Appl. Mater. Inter., 2018, 10, 1334-1339. [114] L. J. Li, Y. Zhang, Nano Res., 2017, 10, 2527-2534. [115] K. A. N. Duerloo, M. T. Ong, E. J. Reed, J. Phys. Chem. Lett., 2012, 3, 2871-2876. [116] K. H. Michel, B. Verberck, Phys. Rev. B, 2011, 83, 115328. [117] T. M. Chou, S. W. Chan, Y. J. Lin, P. K. Yang, C. C. Liu, Y. J. Lin, J. M. Wu, J. T. Lee, Z. H. Lin, Nano Energy, 2019, 57, 14-21. [118] X. Yu, S. Wang, X. D. Zhang, A. H. Qi, X. R. Qiao, Z. R. Liu, M. Q. Wu, L. L. Li, Z. L. Wang, Nano Energy, 2018, 46, 29-38. [119] E. A. Rozhkova, I. Ulasov, B. Lai, N. M. Dimitrijevic, M. Lesniak, T. Rajh, Nano Lett., 2009, 9, 3337-3342. [120] R. Lachner, J. DiCampli, R. M. Jones, B. Mehmetli, P. Popovic, T. Raddings, Vdi. Bericht., 2012, 2177, 187-198. [121] Y. O. Wang, H. Suzuki, J. J. Xie, O. Tomita, D. J. Martin, M. Higashi, D. Kong, R. Abe, J. W. Tang, Chem. Rev., 2018, 118, 5201-5241. [122] S. C. Wang, P. Chen, J. H. Yun, Y. X. Hu, L. Z. Wang, Angew. Chem. Int. Ed., 2017, 56, 8500-8504. [123] R. Tarkowski, Renew. Sust. Energ. Rev., 2019, 105, 86-94. [124] J. H. Wang, W. Cui, Q. Liu, Z. C. Xing, A. M. Asiri, X. P. Sun, Adv. Mater., 2016, 28, 215-230. [125] A. Fujishima, K. Honda, Nature, 1972, 238, 37?38. [126] R. G. Li, Chin. J. Catal., 2017, 38, 5-12. [127] S. W. Boettcher, T. E. Mallouk, F. E. Osterloh, J. Mater. Chem. A, 2016, 4, 2764-2765. [128] Q. Z. Wang, T. J. Niu, L. Wang, J. W. Huang, H. D. She, Chin. J. Catal., 2018, 39, 613-618. [129] Y. S. Jia, D. Zhao, M. R. Li, H. X. Han, C. Li, Chin. J. Catal., 2018, 39, 421-430. [130] B. J. Ma, R. S. Zhang, K. Y. Lin, H. X. Liu, X. Y. Wang, W. Y. Liu, H. J. Zhan, Chin. J. Catal., 2018, 39, 527-533. [131] B. Q. Wang, Y. Ding, Z. R. Deng, Z. H. Li, Chin. J. Catal., 2019, 40, 335-342. [132] S. Singh, N. Khare, Nano Energy, 2017, 42, 173-180. [133] G. R. Desiraju, Angew. Chem. Int. Ed., 1995, 34, 2311-2327. [134] K. Tanaka, F. Toda, Chem. Rev., 2000, 100, 1025-1074. [135] S. Dadashi-Silab, S. Doran, Y. Yagci, Chem. Rev., 2016, 116, 10212-10275. [136] T. P. Yoon, M. A. Ischay, J. N. Du, Nat. Chem., 2010, 2, 527-532. [137] A. Albini, M. Fagnoni, Green Chem., 2004, 6, 1-6. [138] M. S. Liu, T. Y. Peng, H. N. Li, L. Zhao, Y. H. Sang, Q. W. Feng, L. Xu, Y. H. Jiang, H. Liu, J. M. Zhang, Appl. Catal. B, 2019, 249, 172-210. [139] J. H. Guo, Y. T. Cao, R. Shi, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. R. Zhang, Angew. Chem. Int. Ed., 2019, 58, 8443-8447. [140] W. Wang, L. Shang, G. J. Chang, C. Y. Yan, R. Shi, Y. X. Zhao, G. I. N. Waterhouse, D. J. Yang, T. R. Zhang, Adv. Mater., 2019, 31, 1808276. [141] J. Tian, Z. H. Zhao, A. Kumar, R. I. Boughton, H. Liu, Chem. Soc. Rev., 2014, 43, 6920-6937. [142] L. L. Tan, W. J. Ong, S. P. Chai, A. R. Mohamed, Nanoscale Res. Lett., 2013, 8, 465. [143] W. G. Tu, Y. Zhou, Z. G. Zou, Adv. Mater., 2014, 26, 4607-4626. [144] S. C. Tu, Y. H. Zhang, A. H. Reshak, S. Auluck, L. Q. Ye, X. P. Han, T. Y. Ma, H. W. Huang, Nano Energy, 2019, 56, 840-850. [145] C. Peng, G. A. Snook, D. J. Fray, M. S. P. Shaffer, G. Z. Chen, Chem. Commun., 2006, 4629-4631. [146] S. W. Zhang, L. P. Zhao, M. Y. Zeng, J. X. Li, J. Z. Xu, X. K. Wang, Catal. Today, 2014, 224, 114-121. [147] L. L. Zhao, Y. Zhang, F. L. Wang, S. C. Hu, X. N. Wang, B. J. Ma, H. Liu, Z. L. Wang, Y. H. Sang, Nano Energy, 2017, 39, 461-469. [148] S. Masimukku, Y. C. Hu, Z. H. Lin, S. W. Chan, T. M. Chou, J. M. Wu, Nano Energy, 2018, 46, 338-346. [149] Y. Su, L. Zhang, W. Z. Wang, X. M. Li, Y. L. Zhang, D. K. Shao, J. Mater. Chem. A, 2018, 6, 11909-11915. [150] M. Y. Wang, B. Wang, F. Huang, Z. Q. Lin, Angew. Chem. Int. Ed., 2019, 131, 7606-7616. |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[7] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[8] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[9] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Zhidong Wei, Jiawei Yan, Weiqi Guo, Wenfeng Shangguan. Nanoscale lamination effect by nitrogen-deficient polymeric carbon nitride growth on polyhedral SrTiO3 for photocatalytic overall water splitting: Synergy mechanism of internal electrical field modulation [J]. Chinese Journal of Catalysis, 2023, 48(5): 279-289. |
[14] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[15] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||