Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (8): 1288-1297.DOI: 10.1016/S1872-2067(20)63572-0
• Articles • Previous Articles Next Articles
Chunzhi Lia,b, Yinhua Mab,c, Haoran Liua, Lin Taoa,b, Yiqi Rena,b, Xuelian Chena, He Lia, Qihua Yanga
Received:
2019-11-27
Revised:
2019-12-23
Online:
2020-08-18
Published:
2020-08-08
Supported by:
Chunzhi Li, Yinhua Ma, Haoran Liu, Lin Tao, Yiqi Ren, Xuelian Chen, He Li, Qihua Yang. Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage[J]. Chinese Journal of Catalysis, 2020, 41(8): 1288-1297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63572-0
[1] C. R. J. Stephenson, T. P. Yoon, D. W. C. MacMillan, Visble Light Photocatalysis in Organic Chemistry, Wiley, Weinheim, 2018. [2] Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu, Science, 2016, 351, 681-684. [3] Y. Chen, L.-Q. Lu, D.-G. Yu, C.-J. Zhu, W.-J. Xiao, Sci. China:Chem., 2019, 62, 24-57. [4] V. R. Battula, S. Kumar, D. K. Chauhan, S. Samanta, K. Kailasam, Appl. Catal. B, 2019, 244, 313-319. [5] A. Li, C. Tan, T. Yuan, J. Liang, D. Gao, Y. Tan, Y. Jiang, J. Mater. Chem. A, 2018, 6, 15927-15932. [6] M. Cherevatskaya, M. Neumann, S. Füldner, C. Harlander, S. Kümmel, S. Dankesreiter, A. Pfitzner, K. Zeitler, B. König, Angew. Chem. Int. Ed., 2012, 51, 4062-4066. [7] T. Banerjee, F. Haase, G. Savasci, K. Gottschling, C. Ochsenfeld, B. V. Lotsch, J. Am. Chem. Soc., 2017, 139, 16228-16234. [8] H. V. Babu, M. G. M. Bai, M. R. Rao, ACS Appl. Mater. Interfaces, 2019, 11, 11029-11060. [9] J. Chen, X. Tao, C. Li, Y. Ma, L. Tao, D. Zheng, J. Zhu, H. Li, R. Li, Q. Yang, Appl. Catal. B, 2020, 262, 118271. [10] S.-Y. Ding, W. Wang, Chem. Soc. Rev., 2013, 42, 548-568. [11] T. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, W. D. Wang, W. Wang, J. Sun, O. M. Yaghi, Science, 2018, 361, 48-52. [12] H. Hu, Q. Yan, R. Ge, Y. Gao, Chin. J. Catal., 2018, 39, 1167-1179. [13] H. Hu, Q. Yan, M. Wang, L. Yu, W. Pan, B. Wang, Y. Gao, Chin. J. Catal., 2018, 39, 1437-1444. [14] Y. Zhang, H. Hu, J. Ju, Q. Yan, V. Arumugam, X. Jing, H. Cai, Y. Gao, Chin. J. Catal., 2020, 41, 485-493. [15] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci., 2014, 5, 2789-2793. [16] T. Banerjee, K. Gottschling, G. Savasci, C. Ochsenfeld, B. V. Lotsch, ACS Energy Lett., 2018, 3, 400-409. [17] E. Jin, Z. Lan, Q. Jiang, K. Geng, G. Li, X. Wang, D. Jiang, Chem, 2019, 5, 1632-1647. [18] P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomäcker, A. Thomas, J. Schmidt, J. Am. Chem. Soc., 2018, 140, 1423-1427. [19] B. P. Biswal, H. A. Vignolo-González, T. Banerjee, L. Grunenberg, G. Savasci, K. Gottschling, J. Nuss, C. Ochsenfeld, B. V. Lotsch, J. Am. Chem. Soc., 2019, 141, 11082-11092. [20] S. Bi, C. Yang, W. Zhang, J. Xu, L. Liu, D. Wu, X. Wang, Y. Han, Q. Liang, F. Zhang, Nat. Commun., 2019, 10, 2467. [21] X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W.-H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem., 2018, 10, 1180-1189. [22] W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc., 2019, 141, 7615-7621. [23] M. Lu, Q. Li, J. Liu, F.-M. Zhang, L. Zhang, J.-L. Wang, Z.-H. Kang, Y.-Q. Lan, Appl. Catal. B, 2019, 254, 624-633. [24] Y. Fu, X. Zhu, L. Huang, X. Zhang, F. Zhang, W. Zhu, Appl. Catal. B, 2018, 239, 46-51. [25] M. Lu, J. Liu, Q. Li, M. Zhang, M. Liu, J.-L. Wang, D.-Q. Yuan, Y.-Q. Lan, Angew. Chem. Int. Ed., 2019, 58, 12392-12397. [26] W. Liu, Q. Su, P. Ju, B. Guo, H. Zhou, G. Li, Q. Wu, ChemSusChem, 2017, 10, 664-669. [27] Y. Zhi, Z. Li, X. Feng, H. Xia, Y. Zhang, Z. Shi, Y. Mu, X. Liu, J. Mater. Chem. A, 2017, 5, 22933-22938. [28] S. Liu, W. Pan, S. Wu, X. Bu, S. Xin, J. Yu, H. Xu, X. Yang, Green Chem., 2019, 21, 2905-2910. [29] M. Bhadra, S. Kandambeth, M. K. Sahoo, M. Addicoat, E. Balaraman, R. Banerjee, J. Am. Chem. Soc., 2019, 141, 6152-6156. [30] Z. Li, Y. Zhi, P. Shao, H. Xia, G. Li, X. Feng, X. Chen, Z. Shi, X. Liu, Appl. Catal. B, 2019, 245, 334-342. [31] R. Chen, J.-L. Shi, Y. Ma, G. Lin, X. Lang, C. Wang, Angew. Chem. Int. Ed., 2019, 58, 6430-6434. [32] P.-F. Wei, M.-Z. Qi, Z.-P. Wang, S.-Y. Ding, W. Yu, Q. Liu, L.-K. Wang, H.-Z. Wang, W.-K. An, W. Wang, J. Am. Chem. Soc., 2018, 140, 4623-4631. [33] P. J. Waller, S. J. Lyle, T. M. O. Popp, C. S. Diercks, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc., 2016, 138, 15519-15522. [34] X. Li, C. Zhang, S. Cai, X. Lei, V. Altoe, F. Hong, J. J. Urban, J. Ciston, E. M. Chan, Y. Liu, Nat. Commun., 2018, 9, 2998. [35] B. Zhang, M. Wei, H. Mao, X. Pei, S. A. Alshmimri, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc., 2018, 140, 12715-12719. [36] H. Lyu, C. S. Diercks, C. Zhu, O. M. Yaghi, J. Am. Chem. Soc., 2019, 141, 6848-6852. [37] X. Guan, H. Li, Y. Ma, M. Xue, Q. Fang, Y. Yan, V. Valtchev, S. Qiu, Nat. Chem., 2019, 11, 587-594. [38] D. A. Pyles, W. H. Coldren, G. M. Eder, C. M. Hadad, P. L. McGier, Chem. Sci., 2018, 9, 6417-6423. [39] H. Liu, J. Chu, Z. Yin, X. Cai, L. Zhuang, H. Deng, Chem, 2018, 4, 1696-1709. [40] S. J. Lyle, T. M. O. Popp, P. J. Waller, X. Pei, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc., 2019, 141, 11253-11258. [41] F. Haase, E. Troschke, G. Savasci, T. Banerjee, V. Duppel, S. Dörfler, M. M.J. Grundei, A. M. Burow, C. Ochsenfeld, S. Kaskel, B. V. Lotsch, Nat. Commun., 2018, 9, 2600. [42] S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banejee, J. Am. Chem. Soc., 2012, 134, 19524-19527. [43] V. V. Kouznetsov, Tetrahedron, 2009, 65, 2721-2750. [44] S. Kobayashi, H. Ishitani, S. Nagayama, Synthesis, 1995, 9, 1195-1202. [45] H. Laurent-Robert, B. Garrigues, J. Dubac, Synlett, 2000, 8, 1160-1162. [46] M. Matsumoto, R. R. Dasari, W. Ji, C. H. Feriante, T. C. Parker, S. R. Marder, W. R. Dichtel, J. Am. Chem. Soc., 2017, 139, 4999-5002. [47] H. Li, X. Feng, P. Shao, J. Chen, C. Li, S. Jayakumar, Q. Yang, J. Mater. Chem. A, 2019, 7, 5482-5492. [48] L.-K. Wang, J.-J. Zhou, Y.-B. Lan, S.-Y. Ding, W. Yu, W. Wang, Angew. Chem. Int. Ed., 2019, 58, 9443-9447. [49] P. S. Pregosin, E. W. Randall, A. I. White, J. Chem. Soc. Perkin Trans., 1972, 2, 1-4. [50] K. Gottschling, L. Stegbauer, G. Savasci, N. A. Prisco, Z. J. Berkson, C. Ochsenfeld, B. F. Chmelka, B. V. Lotsch, Chem. Mater., 2019, 31, 1946-1955. [51] D. A. Nicewicz, D. W. C. MacMillan, Science, 2008, 322, 77-80. [52] D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 10875-10877. [53] M. Neumann, S. Füldner, B. König, K. Zeitler, Angew. Chem. Int. Ed., 2011, 50, 951-954. [54] H.-W. Shih, M. N. Vander Wal, R. L. Grange, D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 13600-13603. [55] P. Wu, C. He, J. Wang, X. Peng, X. Li, Y. An, C. Duan, J. Am. Chem. Soc., 2012, 134, 14991-14999. [56] H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature, 2014, 515, 100-103. [57] R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed., 2015, 54, 3872-3890. [58] Y. Zhang, Y. Zhu, W. Zhou, X. Qiu, Z. Tang, Part. Part. Syst. Charact., 2018, 35, 1700280. [59] Y. Zhang, J. Guo, L. Shi, Y. Zhu, K. Hou, Y. Zheng, Z. Tang, Sci. Adv., 2017, 3, e1701162. [60] E. Arceo, I. D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat. Chem., 2013, 5, 750-756. [61] Z. Qin, W. Fang, J. Liu, Z. Wei, Z. Jiang, W. Shangguan, Chin. J. Catal., 2018, 39, 472-478. [62] Y. Xiao, X. Sun, L. Li, J. Chen, S. Zhao, C. Jiang, L. Yang, L. Cheng, S. Cao, Chin. J. Catal., 2019, 40, 765-775. [63] N. S. Dange, A. H. Jatoi, F. Robert, Y. Landais, Org. Lett., 2017, 19, 3652-3655. |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[7] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[8] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[9] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[14] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[15] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||