Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (3): 367-375.DOI: 10.1016/S1872-2067(20)63672-5
• Articles • Next Articles
Jun Hu, Yangyang Li, Yanping Zhen, Mingshu Chen*(), Huilin Wan
Received:
2020-05-23
Accepted:
2020-06-28
Online:
2021-03-18
Published:
2021-01-23
Contact:
Mingshu Chen
About author:
*Tel/Fax:+86‐592‐2183723;E‐mail:chenms@xmu.edu.cnSupported by:
Jun Hu, Yangyang Li, Yanping Zhen, Mingshu Chen, Huilin Wan. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation[J]. Chinese Journal of Catalysis, 2021, 42(3): 367-375.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63672-5
Fig. 1. Powder X-ray diffraction XRD patterns after calcination of Al2O3 and 5 wt% Cu/Al2O3 (a) and ZnO and 5 wt% Cu/ZnO (b). The rhombus marks represent the diffraction peaks of CuO.
Fig. 3. CO adsorption bands of (a) the 5 wt% Cu/Al2O3 and (b) the 5 wt% Cu/ZnO after different treatments ([O],[V],and [H] are representative of the O2 oxidization,evacuation,and H2 reduction processes,respectively; PO2 = 100 Torr and PH2 = 100 Torr).
Fig. 4. XPS spectra of Cu 2p (a),Cu L3M4.5M4.5 (b); (c) XPS intensity ratio of Cu0,Cu+,and Cu2+ after the O2 oxidization and H2 reduction processes ([O] and [H] are representative of O2 oxidization and H2 reduction processes,respectively; PO2 = 1 atm and PH2 = 1 atm).
Fig. 5. XPS spectra of Cu 2p (a) and Cu L3M4.5M4.5 (b) after O2 oxidization and H2 reduction processes ([O] and [H] are representative of O2 oxidization and H2 reduction processes,respectively; PO2 = 1 atm and PH2 = 1 atm).
Fig. 6. In situ FTIR spectra of the 5 wt% Cu/Al2O3 (a,b) and the 5 wt%Cu/ZnO (c,d) during CO2 hydrogenation reactions (PCO2 = 33 Torr and PH2 = 100 Torr) at different temperatures after pre‐reduction by H2 at 523 K (PH2 = 100 Torr).
Adsorbed species | Band (cm-1) | Assignment | Ref. |
---|---|---|---|
Bicarbonate on Al2O3 | 1658 1424-1439 1227 | νas(OCO) νs(OCO) δ(OH) | [ |
Monodentate carbonate on Al2O3 | 1480 1390 1077 | νas(OCO) νs(OCO) ν(CO) | [ |
Polydentate carbonate on Al2O3 | 1525 1330 | νas(OCO) νs(OCO) | [ |
Bidentate formate on Al2O3 | 1592 1377 1393 2769 2904 2999 | νas(OCO) νs(OCO) δ(C-H) δ(C-H) + νs(OCO) ν(C-H) δ(C-H) + νas(OCO) | [ |
Bicarbonate on ZnO | 1634 1418 1225 | νas(OCO) νs(OCO) δ(OH) | [ |
Bidentate carbonate on ZnO | 1606 1343 | νas(OCO) νs(OCO) | [ |
Polydentate carbonate on ZnO | 1513 1326 | νas(OCO) νs(OCO) | [ |
Uncoordinated carbonate on ZnO | 1445 | νas(OCO) | [ |
Bidentate formate on ZnO | 1576 1382 1365 2876 2970 | νas(OCO) δ(C-H) νs(OCO) ν(C-H) δ(C-H)+ νas(OCO) | [ |
Methoxy on ZnO | 2930 2815 1050 | νas(CH3) νs(CH3) ν(C-O) | [ |
Bidentate formate on Cu | 1636 1328 1354 2745 2855 2929 | νas(OCO) νs(OCO) δ(C-H) δ(C-H) + νs(OCO) ν(C-H) δ(C-H)+ νas(OCO) | [ |
Table 1 IR band assignments for the adsorption species on Al2O3,ZnO,and Cu.
Adsorbed species | Band (cm-1) | Assignment | Ref. |
---|---|---|---|
Bicarbonate on Al2O3 | 1658 1424-1439 1227 | νas(OCO) νs(OCO) δ(OH) | [ |
Monodentate carbonate on Al2O3 | 1480 1390 1077 | νas(OCO) νs(OCO) ν(CO) | [ |
Polydentate carbonate on Al2O3 | 1525 1330 | νas(OCO) νs(OCO) | [ |
Bidentate formate on Al2O3 | 1592 1377 1393 2769 2904 2999 | νas(OCO) νs(OCO) δ(C-H) δ(C-H) + νs(OCO) ν(C-H) δ(C-H) + νas(OCO) | [ |
Bicarbonate on ZnO | 1634 1418 1225 | νas(OCO) νs(OCO) δ(OH) | [ |
Bidentate carbonate on ZnO | 1606 1343 | νas(OCO) νs(OCO) | [ |
Polydentate carbonate on ZnO | 1513 1326 | νas(OCO) νs(OCO) | [ |
Uncoordinated carbonate on ZnO | 1445 | νas(OCO) | [ |
Bidentate formate on ZnO | 1576 1382 1365 2876 2970 | νas(OCO) δ(C-H) νs(OCO) ν(C-H) δ(C-H)+ νas(OCO) | [ |
Methoxy on ZnO | 2930 2815 1050 | νas(CH3) νs(CH3) ν(C-O) | [ |
Bidentate formate on Cu | 1636 1328 1354 2745 2855 2929 | νas(OCO) νs(OCO) δ(C-H) δ(C-H) + νs(OCO) ν(C-H) δ(C-H)+ νas(OCO) | [ |
Fig. 7. XPS spectra of Cu 2p (a),Cu L3M4.5M4.5 (b); (c) the XPS intensity ratios of Cu0,Cu+,Cu2+; (d) the corresponding HS-LEIS spectra; (e) the top surface content of Cu after H2 pre-reduction and CO2 hydrogenation reactions for the 5 wt% Cu/Al2O3 (PH2 = 1 atm during 523 K H2 pre-reduction,PCO2 = 0.33 atm,and PH2 = 0.67 atm during CO2 hydrogenation reactions).
Fig. 8. In situ FTIR spectra of the 5 wt% Cu/ZnO-Al2O3 (Zn/Al molar ratio of 3) during CO2 hydrogenation reactions (PCO2 = 33 Torr and PH2 = 100 Torr) after pre-reduction by 100 Torr H2 at 523 K.
|
[1] | Huanhuan Yang, Shiying Li, Qun Xu. Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 32-65. |
[2] | Feng Sha, Shan Tang, Chizhou Tang, Zhendong Feng, Jijie Wang, Can Li. The role of surface hydroxyls on ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2023, 45(2): 162-173. |
[3] | Dongni Yu, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde [J]. Chinese Journal of Catalysis, 2019, 40(9): 1375-1384. |
[4] | Shuai Shen, Xiuli Wang, Qian Ding, Shaoqing Jin, Zhaochi Feng, Can Li. Effect of Pt cocatalyst in Pt/TiO2 studied by in situ FTIR of CO adsorption [J]. Chinese Journal of Catalysis, 2014, 35(11): 1990-1906. |
[5] | YU Qiang, GAO Fei, DONG Lin. Recent Progress of Cu-Based Catalysts for Catalytic Elimination of CO [J]. Chinese Journal of Catalysis, 2012, 33(8): 1245-1256. |
[6] | WANG Dongsheng;TAN Yisheng*;HAN Yizhuo;Noritatsu TSUBAKI. Effect of CO2 on Stability of Cu-Based Catalyst for Dimethyl Ether Synthesis in Slurry Phase [J]. Chinese Journal of Catalysis, 2008, 29(1): 63-68. |
[7] | ZHAI Xufang1,2, Jun SHAMOTO3, XIE Hongjuan1, TAN Yisheng1, HAN Yizhuo1*, Noritatsu TSUBAKI3. Deactivation Mechanism of Cu-Based Catalyst for Methanol Synthesis in Slurry Phase [J]. Chinese Journal of Catalysis, 2007, 28(1): 51-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||