Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (9): 1459-1467.DOI: 10.1016/S1872-2067(21)63797-X
• Articles • Previous Articles Next Articles
Limei Wanga,b, Daxue Dua, Biao Zhangb, Shunji Xieb,*(), Qinghong Zhangb, Haiyan Wanga,#(
), Ye Wangb,$(
)
Received:
2021-01-16
Accepted:
2021-03-03
Online:
2021-09-18
Published:
2021-05-16
Contact:
Shunji Xie,Haiyan Wang,Ye Wang
About author:
$ E-mail: wangye@xmu.edu.cnSupported by:
Limei Wang, Daxue Du, Biao Zhang, Shunji Xie, Qinghong Zhang, Haiyan Wang, Ye Wang. Solar energy-driven C-H activation of methanol for direct C-C coupling to ethylene glycol with high stability by nitrogen doped tantalum oxide[J]. Chinese Journal of Catalysis, 2021, 42(9): 1459-1467.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63797-X
Fig. 1. (a) Schematic illustration for the synthesis of N-Ta2O5. SEM images of Ta2O5 (b), 0.6%N-Ta2O5 (c), 2%N-Ta2O5 (d), and 7%N-Ta2O5 (e); (f) EDX mapping and element distributions of 2%N-Ta2O5.
Fig. 3. (a) UV-Vis diffuse reflectance spectra of Ta2O5 and N-Ta2O5; (b) The corresponding plots of modified Kubelka-Munk function versus the energy of exciting light of Ta2O5 and N-Ta2O5; (c) Energy levels of several related redox couples and band-edge positions of Ta2O5 and N-Ta2O5.
Catalyst | Formation rate (mmol gcat-1 h-1) | e-/h+ a | Selectivity b (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
EG | HCHO | HCOOH | CO | CO2 | H2 | EG | HCHO | HCOOH | ||
Ta2O5 | 0.43 | 0.26 | 0 | 0 | 0 | 0.58 | 1.09 | 73 | 27 | 0 |
0.6%N-Ta2O5 | 2.0 | 2.4 | 0.01 | 0 | 0 | 4.3 | 0.96 | 62 | 37 | 1 |
2%N-Ta2O5 | 4.0 | 3.2 | 0.10 | 0 | 0 | 8.7 | 1.06 | 71 | 28 | 1 |
7%N-Ta2O5 | 0.2 | 0.13 | 0 | 0 | 0 | 0.27 | 0.93 | 76 | 24 | 0 |
TiO2 | 0 | 1.6 | 0.11 | 0.16 | 0.042 | 2.0 | 0.91 | 0 | 84 | 5.6 |
ZnO | 0 | 3.0 | 0.038 | 0.23 | 0.028 | 3.1 | 0.90 | 0 | 91 | 1.2 |
WO3 | 0 | 0.48 | 0.051 | 0 | 0 | 0.23 | 0.94 | 0 | 99 | 1 |
Nb2O5 | 0 | 1.4 | 0.071 | 0 | 0 | 0.8 | 1.1 | 0 | 99 | 1 |
Table 1 Photocatalytic performances of Ta2O5, N-Ta2O5 and some typical metal oxide photocatalysts for the MTEG reaction.
Catalyst | Formation rate (mmol gcat-1 h-1) | e-/h+ a | Selectivity b (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
EG | HCHO | HCOOH | CO | CO2 | H2 | EG | HCHO | HCOOH | ||
Ta2O5 | 0.43 | 0.26 | 0 | 0 | 0 | 0.58 | 1.09 | 73 | 27 | 0 |
0.6%N-Ta2O5 | 2.0 | 2.4 | 0.01 | 0 | 0 | 4.3 | 0.96 | 62 | 37 | 1 |
2%N-Ta2O5 | 4.0 | 3.2 | 0.10 | 0 | 0 | 8.7 | 1.06 | 71 | 28 | 1 |
7%N-Ta2O5 | 0.2 | 0.13 | 0 | 0 | 0 | 0.27 | 0.93 | 76 | 24 | 0 |
TiO2 | 0 | 1.6 | 0.11 | 0.16 | 0.042 | 2.0 | 0.91 | 0 | 84 | 5.6 |
ZnO | 0 | 3.0 | 0.038 | 0.23 | 0.028 | 3.1 | 0.90 | 0 | 91 | 1.2 |
WO3 | 0 | 0.48 | 0.051 | 0 | 0 | 0.23 | 0.94 | 0 | 99 | 1 |
Nb2O5 | 0 | 1.4 | 0.071 | 0 | 0 | 0.8 | 1.1 | 0 | 99 | 1 |
Fig. 4. (a) Time course process of 2%N-Ta2O5 in MTEG reaction within 12 h. (b) The product formation rate of 2%N-Ta2O5 in repeated use within 14 cycles (12 h for each cycle). (c) Quantum yields of EG at different wavelengths and UV-Vis diffuse reflectance spectrum of 2%N-Ta2O5. (d) Photocatalytic performances of 2%N-Ta2O5 in 60 h. Reaction conditions: catalyst, 10 mg; solution, 4.0 mL CH3OH (76 wt%) + 1.0 mL H2O (24 wt%), 5.0 mL; N2 atmosphere; 300 W Xe lamp as light source.
Fig. 6. (a) Electron density differences of the top view for Ta2O5 (left) and N-Ta2O5 (right) models. Iso-surface value is 0.004 e?-3. Yellow and blue contours represent electron accumulation and depletion, respectively. (b) Calculated TDOS for Ta2O5 and N-Ta2O5 models.
Fig. 7. (a) In situ ESR spectra of systems containing Ta2O5 and N-Ta2O5 catalysts in aqueous methanol solutions in the presence of DMPO (a spin-trapping agent) without or with light irradiation; (b) Illustration of the photocatalytic coupling of methanol to EG over N-Ta2O5 catalyst.
|
[1] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[2] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[3] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[4] | Yue Liu, Wei Zhang, Haichao Liu. Unraveling the active states of WO3-based catalysts in the selective conversion of cellulose to glycols [J]. Chinese Journal of Catalysis, 2023, 46(3): 56-63. |
[5] | Wei Yu, Jiaoqi Gao, Lun Yao, Yongjin J. Zhou. Bioconversion of methanol to 3-hydroxypropionate by engineering Ogataea polymorpha [J]. Chinese Journal of Catalysis, 2023, 46(3): 84-90. |
[6] | Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde [J]. Chinese Journal of Catalysis, 2023, 46(3): 11-27. |
[7] | Feng Sha, Shan Tang, Chizhou Tang, Zhendong Feng, Jijie Wang, Can Li. The role of surface hydroxyls on ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2023, 45(2): 162-173. |
[8] | Yuehui Li, Duanhui Si, Wangyin Wang, Song Xue, Wenzhe Shang, Zhanyou Chi, Can Li, Ce Hao, Govindjee Govindjee, Yantao Shi. Light-driven CO2 assimilation by photosystem II and its relation to photosynthesis [J]. Chinese Journal of Catalysis, 2023, 44(1): 117-126. |
[9] | Hao Tian, Bingjun Xu. Oxidative co-dehydrogenation of ethane and propane over h-BN as an effective means for C-H bond activation and mechanistic investigations [J]. Chinese Journal of Catalysis, 2022, 43(8): 2173-2182. |
[10] | Ye Wang, Jingfeng Han, Nan Wang, Bing Li, Miao Yang, Yimo Wu, Zixiao Jiang, Yingxu Wei, Peng Tian, Zhongmin Liu. Conversion of methanol to propylene over SAPO-14: Reaction mechanism and deactivation [J]. Chinese Journal of Catalysis, 2022, 43(8): 2259-2269. |
[11] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials [J]. Chinese Journal of Catalysis, 2022, 43(7): 1879-1893. |
[12] | Yu Deng, Jue Li, Rumeng Zhang, Chunqiu Han, Yi Chen, Ying Zhou, Wei Liu, Po Keung Wong, Liqun Ye. Solar-energy-driven photothermal catalytic C-C coupling from CO2 reduction over WO3-x [J]. Chinese Journal of Catalysis, 2022, 43(5): 1230-1237. |
[13] | Lei Li, Wenjun Ouyang, Zefeng Zheng, Kaihang Ye, Yuxi Guo, Yanlin Qin, Zhenzhen Wu, Zhan Lin, Tiejun Wang, Shanqing Zhang. Synergetic photocatalytic and thermocatalytic reforming of methanol for hydrogen production based on Pt@TiO2 catalyst [J]. Chinese Journal of Catalysis, 2022, 43(5): 1258-1266. |
[14] | Peng Wu, Jinyan Zhang, Qianqian Chen, Wei Peng, Binju Wang. Theoretical perspective on mononuclear copper-oxygen mediated C-H and O-H activations: A comparison between biological and synthetic systems [J]. Chinese Journal of Catalysis, 2022, 43(4): 913-927. |
[15] | Jing-Yu Li, Ming-Yu Qi, Yi-Jun Xu. Efficient splitting of alcohols into hydrogen and C-C coupled products over ultrathin Ni-doped ZnIn2S4 nanosheet photocatalyst [J]. Chinese Journal of Catalysis, 2022, 43(4): 1084-1091. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||