Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (2): 276-287.DOI: 10.1016/S1872-2067(21)63817-2
• Article • Previous Articles Next Articles
Nannan Chena, Xuemei Jiaa, Heng Hea, Haili Lina,*(), Minna Guoa, Jing Caoa, Jinfeng Zhangb, Shifu Chena,#(
)
Received:
2021-01-31
Accepted:
2021-03-28
Online:
2022-02-18
Published:
2021-05-20
Contact:
Haili Lin, Shifu Chen
Supported by:
Nannan Chen, Xuemei Jia, Heng He, Haili Lin, Minna Guo, Jing Cao, Jinfeng Zhang, Shifu Chen. Promoting photocarriers separation in S-scheme system with Ni2P electron bridge: The case study of BiOBr/Ni2P/g-C3N4[J]. Chinese Journal of Catalysis, 2022, 43(2): 276-287.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63817-2
Fig. 2. XPS spectra of 10% BNC composite and reference samples. (a) Survey spectra; (b) C 1s; (c) N 1s; (d) O 1s; (e) Ni 2p; (f) P 2p; (g) Bi 4f; (h) Br 3d.
Fig. 3. SEM images of g-C3N4 (a), BiOBr (b), Ni2P (c), and 10% BNC (d); TEM (e) and HRTEM (f) images of the 10% BNC composite; (g) TEM and STEM-EDX elemental mapping for the 10% BNC composite: C, Ni, N, P, Bi, O, and Br.
Fig. 4. N2 adsorption-desorption isotherms (a) and pore size distribution (b) of g-C3N4, BiOBr, Ni2P, Ni2P/g-C3N4, 10% BiOBr/g-C3N4, and BNC composites.
Fig. 5. (a) UV-vis diffuse reflectance spectra of as-prepared samples; the corresponding band gap energies (b,c), Mott-Schottky curves (d,e) of g-C3N4 and BiOBr.
Fig. 6. Photocatalytic activities (a,c), and the corresponding reaction rate constants kapp (b,d) for the as-obtained photocatalysts for MO (a,b) and RhB (c,d) degradation under visible light (λ ≥ 400 nm) irradiation.
Fig. 9. (a) Trapping experiment of active species; EPR responses of the DMPO-•O2- (b) and DMPO-•OH (c) spin adducts over 10% BNC; (d) Current-voltage curves of g-C3N4 and BiOBr under visible light (λ ≥ 400 nm) irradiation.
Fig. 10. The work functions of BiOBr (a), Ni2P (b), and g-C3N4 (c), and insets showing the corresponding calculation model. Schematic illustration of heterostructures: (d) before contact, (e) after contact in darkness, and (f) photogenerated charge carrier transfer process in S-scheme heterojunction under illumination.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[4] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[7] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[8] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[9] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[10] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[11] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[12] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[13] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[14] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[15] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||