Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (2): 485-496.DOI: 10.1016/S1872-2067(21)63897-4
• Article • Previous Articles Next Articles
Jun Wan, Weijie Yang, Jiaqing Liu, Kailong Sun, Lin Liu*(), Feng Fu#(
)
Received:
2021-05-04
Accepted:
2021-05-04
Online:
2022-02-18
Published:
2022-01-19
Contact:
Lin Liu, Feng Fu
Supported by:
Jun Wan, Weijie Yang, Jiaqing Liu, Kailong Sun, Lin Liu, Feng Fu. Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31ClxBr10-x[J]. Chinese Journal of Catalysis, 2022, 43(2): 485-496.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63897-4
Fig. 1. (a,b) Typical XRD patterns and high-resolution XRD patterns of Bi24O31ClxBr10-x; High-resolution XPS spectra of Bi 4f (c), O 1s (d), Cl 2p (e), Br 3d (f) for Bi24O31Cl10, Bi24O31Br10 and Bi24O31Cl4Br6.
Fig. 3. (a-c) DFT calculated local electrostatic potential differences ΔE for bismuth oxyiodide with different crystal structures, charge density distribution in 3D and 2D-[010] views of Bi24O31Cl10, Bi24O31Br10 and Bi24O31Cl4Br6.
Fig. 4. (a-c) Atomic force microscopy (AFM) images at the surface potential mode for bismuth oxyiodide prepared with different crystal structures; Zeta potential value (d), surface charge value (e) and tested IEF (f) of Bi24O31Cl10, Bi24O31Br10 and Bi24O31Cl4Br6.
Fig. 5. Surface photovoltage spectra (a), photoluminescence spectra (b), photocurrent without (c) and with (d) 1 mM methylviologen dichloride (MVCl2); electrochemical impedance spectroscopy (e) and linear sweep voltammetry (LSV) (f) with MVCl2 of Bi24O31Cl10, Bi24O31Br10 and Bi24O31Cl4Br6 samples.
Fig. 6. DRS spectra (a), the plot of (αhν)1/2 as a function of photon energy hν (b) of the as-prepared Bi24O31ClxBr10-x; Mott-Schottky plots (c) and tested results (d) of the band position for samples prepared.
Fig. 7. (a,b) Comparison of the photocatalytic activity under visible light irradiation (λ > 420 nm) on photodegradation of BPA over Bi24O31ClxBr10-x samples; (c) The relationship of IEF intensity, charge separation efficiency and photocatalytic activity.
Pollutant | Structural formula | Degradation efficiency (%) | k1:k2:k3 | ||
---|---|---|---|---|---|
Bi24O31Cl10 | Bi24O31Br10 | Bi24O31Cl4Br6 | |||
Phenol (C6H6) | ![]() | 6 | 16.7 | 33.7 | 1:2.8:5.9 |
Resorcinol (C6H6O2) | ![]() | 26 | 43.2 | 78.0 | 1:2.4:5.3 |
2,4-Dichlorophenol (C6H4Cl2O) | ![]() | 15.7 | 38 | 68.2 | 1:2.6:6.5 |
p-Nitrophenol (C6H5NO3) | ![]() | 11.9 | 19 | 36.1 | 1:1.8:3.4 |
Tert-Butylphenol (C10H14O) | ![]() | 21.9 | 38.0 | 63.0 | 1:2.0:4.4 |
Table 1 Visible-light photocatalytic activities of Bi24O31Cl10, Bi24O31Br10 and Bi24O31Cl4Br6 samples for other phenols degradation and apparent rate constant.
Pollutant | Structural formula | Degradation efficiency (%) | k1:k2:k3 | ||
---|---|---|---|---|---|
Bi24O31Cl10 | Bi24O31Br10 | Bi24O31Cl4Br6 | |||
Phenol (C6H6) | ![]() | 6 | 16.7 | 33.7 | 1:2.8:5.9 |
Resorcinol (C6H6O2) | ![]() | 26 | 43.2 | 78.0 | 1:2.4:5.3 |
2,4-Dichlorophenol (C6H4Cl2O) | ![]() | 15.7 | 38 | 68.2 | 1:2.6:6.5 |
p-Nitrophenol (C6H5NO3) | ![]() | 11.9 | 19 | 36.1 | 1:1.8:3.4 |
Tert-Butylphenol (C10H14O) | ![]() | 21.9 | 38.0 | 63.0 | 1:2.0:4.4 |
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[4] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[7] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[8] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[9] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[10] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[11] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[12] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[13] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[14] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[15] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||