[1] | A. Greenberg, C. M. Breneman, J. F. Liebman, The amide linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, Wiley, New York, 2000. | [2] | J. W. Clader, J. Med. Chem., 2004, 47, 1-9. | [3] | L. Crespo, G. Sanclimens, M. Pons, E. Giralt, M. Royo, F. Albericio, Chem. Rev., 2005, 105, 1663-1682. | [4] | U. Boas, J. Brask, K. J. Jensen, Chem. Rev., 2009, 109, 2092-2118. | [5] | X. Guo, A. Facchetti, T. J. Marks, Chem. Rev., 2014, 114, 8943-9021. | [6] | I. Ziccarelli, R. Mancuso, F. Giacalone, C. Calabrese, V. La Parola, A. De Salvo, N. Della Ca’, M. Gruttadauria, B. Gabriele, J. Catal., 2022, 413, 1098-1110. | [7] | G. Kiss, Chem. Rev., 2001, 101, 3435-3456. | [8] | B. Gabriele, Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry, Wiley-VCH, Weinheim, 2021. | [9] | L.-J. Cheng, N. P. Mankad, Chem. Soc. Rev., 2020, 49, 8036-8064. | [10] | S. Sumino, A. Fusano, T. Fukuyama, I. Ryu, Acc. Chem. Res., 2014, 47, 1563-1574. | [11] | J.-B. Peng, F.-P. Wu, X.-F. Wu, Chem. Rev., 2019, 119, 2090-2127. | [12] | R. J. Atkins, A. Banks, R. K. Bellingham, G. F. Breen, J. S. Carey, S. K. Etridge, J. F. Hayes, N. Hussain, D. O. Morgan, P. Oxley, S. C. Passey, T. C. Walsgrove, A. S. Wells, Org. Process Res. Dev., 2003, 7, 663-675. | [13] | C. F. J. Barnard, Organometallics, 2008, 27, 5402-5422. | [14] | L.-J. Cheng, N. P. Mankad, Acc. Chem. Res., 2021, 54, 2261-2274. | [15] | L. Wu, X. Fang, Q. Liu, R. Jackstell, M. Beller, X.-F. Wu, ACS Catal., 2014, 4, 2977-2989. | [16] | I. Ryu, K. Nagahara, N. Kambe, N. Sonoda, S. Kreimerman, M. Komatsu, Chem. Commun., 1998, 1953-1954. | [17] | O. Itsenko, T. Kihlberg, B. Långström, J. Org. Chem., 2004, 69, 4356-4360. | [18] | T. Fukuyama, S. Nishitani, T. Inouye, K. Morimoto, I. Ryu, Org. Lett., 2006, 8, 1383-1386. | [19] | T. Fukuyama, T. Inouye, I. Ryu, J. Organomet. Chem., 2007, 692, 685-690. | [20] | S. Y. Chow, M. Y. Stevens, L. Åckerbladh, S. Bergman, L. R. Odell, Chem. Eur. J., 2016, 22, 9155-9161. | [21] | O. Rahman, B. Långström, C. Halldin, ChemistrySelect, 2016, 1, 2498-2501. | [22] | M. Sardana, J. Bergman, C. Ericsson, L. P. Kingston, M. Schou, C. Dugave, D. Audisio, C. S. Elmore, J. Org. Chem., 2019, 84, 16076-16085. | [23] | B. T. Sargent, E. J. Alexanian, Angew. Chem. Int. Ed., 2019, 58, 9533-9536. | [24] | G. M. Torres, Y. Liu, B. A. Arndtsen, Science, 2020, 368, 318-323. | [25] | F. Zhao, H.-J. Ai, X.-F. Wu, Angew. Chem.Int. Ed., 2022, 61, e202200062. | [26] | J. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, 2010. | [27] | A. C. Bissember, A. Levina, G. C. Fu, J. Am. Chem. Soc., 2012, 134, 14232-14237. | [28] | M. R. Kwiatkowski, E. J. Alexanian, Acc. Chem. Res., 2019, 52, 1134-1144. | [29] | R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev., 2011, 111, 1417-1492. | [30] | B. T. Sargent, E. J. Alexanian, J. Am. Chem. Soc., 2016, 138, 7520-7523. | [31] | L.-J. Cheng, S. M. Islam, N. P. Mankad, J. Am. Chem. Soc., 2018, 140, 1159-1164. | [32] | L.-J. Cheng, N. P. Mankad, J. Am. Chem. Soc., 2020, 142, 80-84. | [33] | Q. Liu, H. Zhang, A. Lei, Angew. Chem. Int. Ed., 2011, 50, 10788-10799. | [34] | Y. Liu, Y.-H. Chen, H. Yi, A. Lei, ACS Catal., 2022, 12, 7470-7485. | [35] | B. Lu, M. Xu, X. Qi, M. Jiang, W.-J. Xiao, J.-R. Chen, J. Am. Chem. Soc., 2022, 144, 14923-14935. | [36] | M. P. Cooke, J. Am. Chem. Soc., 1970, 92, 6080-6082. | [37] | J. P. Collman, N. W. Hoffman, J. Am. Chem. Soc., 1973, 95, 2689-2691. | [38] | J. P. Collman, S. R. Winter, D. R. Clark, J. Am. Chem. Soc., 1972, 94, 1788-1789. | [39] | J. P. Collman, S. R. Winter, R. G. Komoto, J. Am. Chem. Soc., 1973, 95, 249-250. | [40] | A. Stockis, E. Weissberger, J. Am. Chem. Soc., 1975, 97, 4288-4292. | [41] | M. Periasamy, A. Mukkanti, D. S. Raj, Organometallics, 2004, 23, 6323-6326. | [42] | M. Periasamy, A. Mukkanti, D. S. Raj, Organometallics, 2004, 23, 619-621. | [43] | C. Rameshkumar, M. Periasamy, Synlett, 2000, 1619-1621. | [44] | C. Rameshkumar, M. Periasamy, Organometallics, 2000, 19, 2400-2402. | [45] | M. Periasamy, C. Rameshkumar, U. Rhadhakrishnan, J.-J. Brunet, J. Org. Chem., 1998, 63, 4930-4935. | [46] | K. M. Driller, S. Prateeptongkum, R. Jackstell, M. Beller, Angew. Chem. Int. Ed., 2011, 50, 537-541. | [47] | S. Prateeptongkum, K. M. Driller, R. Jackstell, M. Beller, Chem. Asian J., 2010, 5, 2173-2176. | [48] | K. M. Driller, H. Klein, R. Jackstell, M. Beller, Angew. Chem. Int. Ed., 2009, 48, 6041-6044. | [49] | S. Prateeptongkum, K. M. Driller, R. Jackstell, A. Spannenberg, M. Beller, Chem. Eur. J., 2010, 16, 9606-9615. | [50] | M. Pizzetti, A. Russo, E. Petricci, Chem. Eur. J., 2011, 17, 4523-4528. | [51] | T. Susuki, J. Tsuji, J. Org. Chem., 1970, 35, 2982-2986. | [52] | T. N. Allah, S. Savourey, J. C. Berthet, E. Nicolas, T. Cantat, Angew. Chem. Int. Ed., 2019, 58, 10884-10887. | [53] | S. L. Buchwald, C. Bolm, Angew. Chem. Int. Ed., 2009, 48, 5586-5587. | [54] | C. Walling, A. Cioffari, J. Am. Chem. Soc., 1972, 94, 6059-6064. | [55] | In the reaction, Cs2CO3 been transformed into CsHCO3 which will give Cs2CO3, H2O, and CO2 after thermal disproportionation. The produced H2O will react with RX to give ROH which then produces RCO2R after carbonylation reaction. See: H.-J. Ai, H. Wang, C.-L. Li, X.-F. Wu, ACS Catal., 2020, 10, 5147-5152. | [56] | H.-J. Ai, B. N. Leidecker, P. Dam, C. Kubis, J. Rabeah, X.-F. Wu, Angew. Chem. Int. Ed., 2022, 61, e202211939. | [57] | J. Y. Wang, A. E. Strom, J. F. Hartwig. J. Am. Chem. Soc., 2018, 140, 7979-7993. | [58] | J. P. Collman, R. G. Finke, J. N. Cawse, J. I. Brauman, J. Am. Chem. Soc., 1977, 99, 2515-2526. | [59] | J. Guo, H. D. Pham, Y.-B. Wu, D. Zhang, X. Wang, ACS Catal., 2020, 10, 1520-1527. |
|