Chinese Journal of Catalysis ›› 2024, Vol. 57: 154-170.DOI: 10.1016/S1872-2067(23)64573-5
• Articles • Previous Articles Next Articles
Wenjing Baoa, Chao Fenga,c, Shuyan Maa, Dengwei Yana, Cong Zhanga, Changle Yuea, Chongze Wanga, Hailing Guoa, Jiqian Wanga, Daofeng Sunb, Yunqi Liua, Yukun Lua,*()
Received:
2023-11-02
Accepted:
2023-11-27
Online:
2024-02-18
Published:
2024-02-10
Contact:
* E-mail: Supported by:
Wenjing Bao, Chao Feng, Shuyan Ma, Dengwei Yan, Cong Zhang, Changle Yue, Chongze Wang, Hailing Guo, Jiqian Wang, Daofeng Sun, Yunqi Liu, Yukun Lu. Controlled construction of Co3S4@CoMoS yolk-shell sphere for efficient hydrodesulfurization promoted by hydrogen spillover effect[J]. Chinese Journal of Catalysis, 2024, 57: 154-170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64573-5
Fig. 2. Schematic illustration of the formation process of Co3S4@CoMoS yolk shell spheres. SEM (a), TEM (b,c) images, and corresponding EDX elemental mappings of Co3S4@CoMoS sample.
Catalyst | BET surface area (m2 g-1) | Average pore diameter (nm) | Total pore volume (cm3 g-1) |
---|---|---|---|
Co3S4@CoMoS | 72 | 9.60 | 0.17 |
H-CoMoS | 40 | 10.4 | 0.13 |
MM-Co3S4/MoS2 | 38 | 10.6 | 0.13 |
O-MoS2 | 36 | 9.90 | 0.10 |
Table 1 Textual properties of the catalysts.
Catalyst | BET surface area (m2 g-1) | Average pore diameter (nm) | Total pore volume (cm3 g-1) |
---|---|---|---|
Co3S4@CoMoS | 72 | 9.60 | 0.17 |
H-CoMoS | 40 | 10.4 | 0.13 |
MM-Co3S4/MoS2 | 38 | 10.6 | 0.13 |
O-MoS2 | 36 | 9.90 | 0.10 |
Fig. 5. H2-TPR (a) and H2-TPD (b) curves of catalysts and photographs of samples made of WO3 mixed with the Co3S4@CoMoS (c), MM-Co3S4/MoS2 (d), H-CoMoS (e), and O-MoS2 (f) catalysts after H2 treatment.
Fig. 6. HRTEM images of the catalysts Co3S4@CoMoS (a), H-CoMoS (b), MM-Co3S4/MoS2 (c), and O-MoS2 (d). (e,f) Distribution of the length and number of layers of the MoS2 slabs. (g,h) Schematic diagram of (Co)MoS2 slabs curvature and defect sites.
Catalyst | Average length (nm) | Average stacking | fMo |
---|---|---|---|
Co3S4@CoMoS | 6.1 | 3.2 | 0.22 |
H-CoMoS | 6.7 | 3.1 | 0.20 |
MM-Co3S4/MoS2 | 9.2 | 3.6 | 0.14 |
O-MoS2 | 9.4 | 3.7 | 0.14 |
Table 2 Average length (L?), Average stacking (N?) and the average fraction of Mo atoms (fMo) on the edge surface of the MoS2 crystals.
Catalyst | Average length (nm) | Average stacking | fMo |
---|---|---|---|
Co3S4@CoMoS | 6.1 | 3.2 | 0.22 |
H-CoMoS | 6.7 | 3.1 | 0.20 |
MM-Co3S4/MoS2 | 9.2 | 3.6 | 0.14 |
O-MoS2 | 9.4 | 3.7 | 0.14 |
Catalyst | Mo5+ area (%) | Mo6+ area (%) | Mosulfidation a (%) | CoSx area (%) | Co2+ area (%) | [CoMoS] b (%) |
---|---|---|---|---|---|---|
Co3S4@CoMoS | 22 | 8.0 | 70 | 7.5 | 9.5 | 83 |
H-CoMoS | 19 | 14 | 67 | 11 | 19 | 70 |
MM-Co3S4/MoS2 | 15 | 24 | 61 | 77 | 23 | — |
O-MoS2 | 13 | 29 | 58 | — | — | — |
Table 3 XPS parameters of Mo 3d and Co 2p contributions of Co3S4@CoMoS, H-CoMoS, MM-Co3S4/MoS2 and O-MoS2 catalysts.
Catalyst | Mo5+ area (%) | Mo6+ area (%) | Mosulfidation a (%) | CoSx area (%) | Co2+ area (%) | [CoMoS] b (%) |
---|---|---|---|---|---|---|
Co3S4@CoMoS | 22 | 8.0 | 70 | 7.5 | 9.5 | 83 |
H-CoMoS | 19 | 14 | 67 | 11 | 19 | 70 |
MM-Co3S4/MoS2 | 15 | 24 | 61 | 77 | 23 | — |
O-MoS2 | 13 | 29 | 58 | — | — | — |
Catalyst | HDS conversion (%) | Ea (kJ mol-1) | kHDS (10-6 molDBT gcat-1 s-1) | TOF values a (10-3 s-1) | Product selectivity a | |||
---|---|---|---|---|---|---|---|---|
BP (%) | CHB (%) | THDBT+HHDBT (%) | SDDS/HYD | |||||
Co3S4@CoMoS | 99.2 | 76 | 5.0 | 4.4 | 79 | 20 | 1 | 3.8 |
H-CoMoS | 60.3 | 102 | 1.1 | 2.2 | 68 | 28 | 4 | 2.1 |
MM-Co3S4/MoS2 | 59.0 | 117 | 0.9 | 1.2 | 66 | 30 | 4 | 1.9 |
O-MoS2 | 40.9 | 139 | 0.5 | 0.93 | 60 | 35 | 5 | 1.5 |
Table 4 HDS activity and product distribution over Co3S4@CoMoS, H-CoMoS, MM-Co3S4/MoS2 and O-MoS2 catalysts.
Catalyst | HDS conversion (%) | Ea (kJ mol-1) | kHDS (10-6 molDBT gcat-1 s-1) | TOF values a (10-3 s-1) | Product selectivity a | |||
---|---|---|---|---|---|---|---|---|
BP (%) | CHB (%) | THDBT+HHDBT (%) | SDDS/HYD | |||||
Co3S4@CoMoS | 99.2 | 76 | 5.0 | 4.4 | 79 | 20 | 1 | 3.8 |
H-CoMoS | 60.3 | 102 | 1.1 | 2.2 | 68 | 28 | 4 | 2.1 |
MM-Co3S4/MoS2 | 59.0 | 117 | 0.9 | 1.2 | 66 | 30 | 4 | 1.9 |
O-MoS2 | 40.9 | 139 | 0.5 | 0.93 | 60 | 35 | 5 | 1.5 |
Fig. 9. Variation in ln(c0/c) vs. reaction time (a) and Arrhenius plots of the reaction rate (ln kHDS) vs. 1/T (b) for the DBT HDS of Co3S4@CoMoS, H-CoMoS, MM-Co3S4/MoS2, O-MoS2 catalysts. (c) Cycle stability experiment of DBT of Co3S4@CoMoS catalyst. (d) Product yield, DBT conversion and pathway selectivity of Co3S4@CoMoS-1, Co3S4@CoMoS-3, Co3S4@CoMoS-6, Co3S4@CoMoS-8 and Co3S4@CoMoS catalysts.
Catalyst | HDS conversion (%) | Product selectivity a | ||||
---|---|---|---|---|---|---|
3,3'-DMCHB (%) | 4,6-THDMDBT+4,6-HHDMDBT (%) | 3,3'-DMBCH (%) | 3,3'-DMBP (%) | SDDS/HYD | ||
Co3S4@CoMoS | 94.9 | 59 | 2.0 | 17 | 22 | 0.3 |
H-CoMoS | 44.3 | 38 | 18 | 16 | 28 | 0.4 |
MM-Co3S4/MoS2 | 38.0 | 31 | 19 | 15 | 35 | 0.5 |
O-MoS2 | 15.1 | 6.6 | 52 | 5.4 | 36 | 0.6 |
Table 5 4,6-DMDBT HDS activity and product distribution over Co3S4@CoMoS, H-CoMoS, MM-Co3S4/MoS2 and O-MoS2 catalysts.
Catalyst | HDS conversion (%) | Product selectivity a | ||||
---|---|---|---|---|---|---|
3,3'-DMCHB (%) | 4,6-THDMDBT+4,6-HHDMDBT (%) | 3,3'-DMBCH (%) | 3,3'-DMBP (%) | SDDS/HYD | ||
Co3S4@CoMoS | 94.9 | 59 | 2.0 | 17 | 22 | 0.3 |
H-CoMoS | 44.3 | 38 | 18 | 16 | 28 | 0.4 |
MM-Co3S4/MoS2 | 38.0 | 31 | 19 | 15 | 35 | 0.5 |
O-MoS2 | 15.1 | 6.6 | 52 | 5.4 | 36 | 0.6 |
Fig. 11. (a) Difference charge density of CoMoS-Co3S4 model. The interface energy is 0.004 eV. Red region represents charge accumulation, blue region represents charge reduction. Color scheme: Yellow spheres represent S atoms; Reddish brown spheres represent Mo atoms; Dark blue spheres represent Co atoms. (b) Electron localization function of CoMoS-Co3S4 and CoMoS model. Density of states of CoMoS-Co3S4 (c) and CoMoS (d) model.
Fig. 13. Schematic illustration of the dual active sites of hydrogen spillover and CoMoS for the synergistic catalytic HDS reaction. (process I represent the diffusion of H2; process II represents the activation of H2 to Hso; process III represents the diffusion of Hso; process IV represents the HDS reaction of 4,6-DMDBT on CoMoS phase.)
|
[1] | Shaotong Song, Xu Yang, Bo Wang, Xiaofeng Zhou, Aijun Duan, Kebin Chi, Zhen Zhao, Chunming Xu, Zhentao Chen, Jianmei Li. Al-modified mesocellular silica foam as a superior catalyst support for dibenzothiophene hydrodesulfurization [J]. Chinese Journal of Catalysis, 2017, 38(8): 1347-1359. |
[2] | Huan Liu, Changlong Yin, Hongyu Zhang, Chenguang Liu. Sustainable synthesis of ammonium nickel molybdate for hydrodesulfurization of dibenzothiophene [J]. Chinese Journal of Catalysis, 2016, 37(9): 1502-1512. |
[3] | Liang Hao, Guang Xiong, Liping Liu, Huayun Long, Fengying Jin, Xiangsheng Wang. Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene [J]. Chinese Journal of Catalysis, 2016, 37(3): 412-419. |
[4] | Květa Jirátová, Alla Spojakina, Luděk Kaluža, Radostina Palcheva, Jana Balabánová, Georgi Tyuliev. Hydrodesulfurization activities of NiMo catalysts supported on mechanochemically prepared Al-Ce mixed oxides [J]. Chinese Journal of Catalysis, 2016, 37(2): 258-267. |
[5] | Yu Zhao, Jun'en Wang, Hui Chen, Xiaoyan Zhang, Yuchuan Fu, Jianyi Shen. Synthesis of high-surface-area Co-O-Si complex oxide for skeletal isomerization of 1-hexene and hydrodesulfurization of thiophene [J]. Chinese Journal of Catalysis, 2014, 35(8): 1402-1409. |
[6] | SHI Gang, HAN Wei, YUAN Pei, FAN Yu, BAO Xiaojun. Sulfided Mo/Al2O3 hydrodesulfurization catalyst prepared by ethanol-assisted chemical deposition method [J]. Chinese Journal of Catalysis, 2013, 34(4): 659-666. |
[7] | FANG Xiang-Chen, GUO Rong, YANG Cheng-Min. The development and application of catalysts for ultra-deep hydrodesulfurization of diesel [J]. Chinese Journal of Catalysis, 2013, 34(1): 130-139. |
[8] | HONG Wei, LIU Bai-Jun, WANG Hong-Bin, CHEN Yu. Hydrothermal Synthesis of TiO2-Al2O3 Composite Oxide and Catalytic Performance of Its Suppored NiMoP for Hydrodesulfurization of FCC Diesel [J]. Chinese Journal of Catalysis, 2012, 33(9): 1586-1593. |
[9] | FAN Xiao-Bing, LIU Fang, YAO Si-Yu, DENG Xian-He, ZHOU Wen-Juan, KOU Yuan. Preparation of MoS2 Nanocatalyst and Its Application in Hydrodesulfurization [J]. Chinese Journal of Catalysis, 2012, 33(6): 1027-1031. |
[10] | Radostina PALCHEVA, Luděk KALU?A, Alla SPOJAKINA, Květu?e JIRáTOVá, Georgi TYULIEV. NiMo/γ-Al2O3 Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B, Co, or Ni [J]. Chinese Journal of Catalysis, 2012, 33(6): 952-961. |
[11] | QI Xue, SHI Qiu-Jie, CHEN Wei-Qing, ZHANG Rong-Bin. Effect of Mo on Performance of Ni-B/Boehmite Amorphous Alloy Catalyst for Thiophene Hydrodesulfurization [J]. Chinese Journal of Catalysis, 2012, 33(3): 543-549. |
[12] | LI Qiaoling1, ZHANG Yuanhua1, CHEN Shiping1, FANG Weiping1,2,* and YANG Yiquan1,2,#. Development of a Novel Conversion Equation as a Function of Catalytic Reaction Conditions in Tubular Reactors [J]. Chinese Journal of Catalysis, 2011, 32(3): 446-450. |
[13] | Qiherima1,3, LI Huifeng2, YUAN Hui2, ZHANG Yunhong1, XU Guangtong2,*. Effect of Alumina Supports on the Formation of Active Phase of Selective Hydrodesulfurization Catalysts Co-Mo/Al2O3 [J]. Chinese Journal of Catalysis, 2011, 32(2): 240-249. |
[14] | SHI Guojun, ZHAO Yu, HUANG Yu’an, SHEN Jianyi*. Mesoporous Carbon Supported Co-Mo and Ni-Mo Catalysts for Hydrodesulfurization [J]. Chinese Journal of Catalysis, 2010, 31(8): 961-964. |
[15] | CHEN Shanshan;ZHU Yinhua;LI Wei;LIU Weijia;LI Licheng;YANG Zhuhong;LIU Chang;YAO Wenjun;LU Xiaohua*;FENG Xin. Synthesis, Features, and Applications of Mesoporous Titania with TiO2(B) [J]. Chinese Journal of Catalysis, 2010, 31(6): 605-614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||