Chinese Journal of Catalysis ›› 2024, Vol. 57: 18-50.DOI: 10.1016/S1872-2067(23)64593-0
• Reviews • Previous Articles Next Articles
Min Lia, Shixin Yub,*(), Hongwei Huangc,*(
)
Received:
2023-11-09
Accepted:
2024-01-03
Online:
2024-02-18
Published:
2024-02-10
Contact:
* E-mail: About author:
Shixin Yu is a lecturer at Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University. He graduated from China University of Geosciences (Beijing) with a doctorate in Materials Science and Technology in 2020. His research interests focus on lignocellulosic biomass high-value utilization and photocatalytic conversion for sustainable materials and chemicals.Supported by:
Min Li, Shixin Yu, Hongwei Huang. Emerging polynary bismuth-based photocatalysts: Structural classification, preparation, modification and applications[J]. Chinese Journal of Catalysis, 2024, 57: 18-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64593-0
Fig. 1. The year diagram of the NPBB photocatalysts and their corresponding applications in photocatalysis by first reported (the blue point indicates that the photocatalysts were first reported by our group).
Fig. 4. Crystal structures of Bi3O4Br (a), Bi4O5I2 (b), Bi5O7Br (c), Bi24O31Br10 (d), PbBiO2I (e), SrBiO2Cl (f), LiBi3O4Cl2 (g), Bi2EuO4Cl (h) and Bi2O2S (i). (double cell Z).
Structure type | Photocatalyst | Crystal system | Space group | Synthesis method | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sillén | Bi12O17Cl2 | tetragonal | P4/nmm | hydrothermal: Bi(NO3)3·5H2O, KCl, pH = 12.6, 160 °C for 24 h | [ | |||||||
solid-state reaction: α-Bi2O3, HCl, 350-400 °C for 2 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, HCl solution, PVP, NaOH solution, 160 °C for 6 h, then annealing at 500 °C for 4 h | [ | |||||||||||
solid-state reaction: BiOCl, Bi2O3, 600 °C in air for 12 h | [ | |||||||||||
Bi12O17Br2 | tetragonal | P4/nmm | hydrolysis: hemispherical: Bi(NO3)3·5H2O, urea, CTAB; flowerlike: Bi(NO3)3·5H2O, EG, CTAB; platelike: Bi(NO3)3·5H2O, HOAc, CTAB | [ | ||||||||
hydrothermal: BiBr3, absolute alcohol, NaOH solution, 150 °C for 24 h | [ | |||||||||||
Bi24O31Cl10 | monoclinic | A21/m1 | electrochemistry: anode-Bi foil, cathode-Ni foil, electrolyte is NaCl and EDTA, pH = 12 (NaOH solution), 10 V for 2 h | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAC, NaOH solution, 400-800 °C | [ | |||||||||||
hydrothermal: Bi(NO3)3·5H2O, NaCl, pH = 10.3, 160 °C for 18.5 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, Ethylene glycol, NH4Cl, 160 °C for 12 h and calcination 500 °C for 4 h | [ | |||||||||||
Bi24O31Br10 | monoclinic | A21/m1 | microwave: Bi(NO3)3·5H2O, CTAB, ethylene glycol, pH = 10.5 (NaOH solution), microwave reaction at 400 W for 3 min | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAB, NaOH solution, then heat treatment under 300-800 °C | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, starch, glycerol, CTAB, NaOH solution, 160 °C for 16 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, ethylene glycol, NH4Br, ethanol amine, 160 °C for 12 h | [ | |||||||||||
Bi4O5I2 | monoclinic | P1211 | solvothermal: Bi(NO3)3·5H2O, glycerol, NaI, 130 °C for 12 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, KI, EG, pH=9, 150 °C for 12 h | [ | |||||||||||
microwave: Bi(NO3)3·5H2O, KI, EG, H2O, 120 °C for 12 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, [Hmim]I, mannitol solution, pH = 12 (NaOH solution), 140 °C for 24 h | [ | |||||||||||
Bi5O7Br | orthorhombic | cmca | self-assembled method: Bi(NO3)3·5H2O, oleylamine, KBr, water | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, KBr, pH = 13, 160 °C for 16 h | [ | |||||||||||
Bi3O4Br | orthorhombic | pnan | hydrothermal: Bi(NO3)3·5H2O, CTAB, pH = 11.5, 160 °C for 18 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, methanol, CTAB, PVP, pH = 12.3, 180 °C for 24 h | [ | |||||||||||
Bi2EuO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Eu2O3, 800 °C for 4 h | [ | ||||||||
Bi2NdO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Nd2O3, 800 °C for 4 h | [ | ||||||||
LiBi3O4Cl2 | tetragonal | I4/mmm | solid state reaction: BiOCl, Li2CO3 and Bi2O3, 500 °C for 6 h, then re-heated at 500, 600, 700 °C or 800 for 12 h | [ | ||||||||
SrBiO2Cl | orthorhombic | Cmcm | solid state reaction: SrCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
BaBiO2Cl | orthorhombic | Cmcm | solid state reaction: BaCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
PbBiO2Cl | tetragonal | I4/mmm | hydrothermal: BiCl3, NaOH, (CH₃COO)2Pb·3H2O, 160 °C for 20 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [C16mim]Cl, PVP, 160 °C for 24 h | [ | |||||||||||
solid state reaction: PbO, BiOCl, 700 °C for 10 h | [ | |||||||||||
Pb0.6Bi1.4O2Cl1.4 | tetragonal | I4/mmm | top-down wet chemistry desalination: first, Pb0.6Bi1.4Cs0.6O2Cl was synthesized by heating BiOCl, PbO, CsCl at 800 °C for 5 d; next, the material and water were mixed with an ultrasonic bath for 14 d | [ | ||||||||
BaBiO2Br | tetragonal | I4/mmm | solid state reaction: BaCO3, BiOBr, 900 °C for 4 h | [ | ||||||||
SrBiO2Br | tetragonal | Cmcn | solid state reaction: SrCO3, BiOBr, 700 °C for 4 h | [ | ||||||||
PbBiO2I | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH₃COO)2Pb, NaI, 180 °C for 24 h | [ | ||||||||
solvothermal: Bicc(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [Hmim]I, 180 °C for 24 h | [ | |||||||||||
CdBiO2Br | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH3COO)2Cd·2H2O, KBr, pH = 10 (NH3·H2O), 180 °C for 12 h | [ | ||||||||
Bi2YO4Cl | tetragonal | P4/mmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, 800 °C for 12 h | [ | ||||||||
Bi2O2(S, Se) | orthorhombic | Pnnm | hydrothermal: Bi(NO3)3·5H2O, SC(NH2)2 or SeC(NH2)2, LiOH·H2O, 200 °C for 12 h | [ | ||||||||
Sillén- related | Bi2O2(OH)(NO3) | orthorhombic | Cmc21 | hydrothermal: Bi(NO3)3·5H2O, pH = 1, 1.5, 2, 3, 4, 180 °C for 24 h | [ | |||||||
hydrothermal: Bi(NO3)3·5H2O, glacial acetic acid, 150 °C for 5 h | [ | |||||||||||
Bi2O2[BO2(OH)] | monoclinic | Cm | hydrothermal: Bi2B2O9, water, 200 °C for 24 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, H3BO3, PVP, 120°C for 24 h | [ | |||||||||||
BiOIO3 | orthorhombic | Pca21 | hydrothermal: Bi(NO3)3·5H2O, KIO3, 150 °C for 5 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||||||
Aurivillius | Bi2CrO6 | triclinic | P-1 | hydrothermal: Bi(NO3)3·5H2O, K2CrO4, nitric acid, ammonia, 180 °C for 6 h | [ | |||||||
CdBi2Nb2O9 | orthorhombic | P212121 | combustion method: Cd(NO3)2, Bi(NO3)3·5H2O, Nb(OH)5; urea, glycine, ammonium nitrate and starch as a fuel, 600 °C for 4 h | [ | ||||||||
Bi2(Nb, Ta)O5F | tetragonal | I4/mmm | hydrothermal: Nb2O5 or Ta2O5, HF, Bi(NO3)3·5H2O, EG, 150 °C for 12 h | [ | ||||||||
SrBi4Ti4O15 | orthorhombic | A21am | hydrothermal: Ti(OC4H9)4, NaOH solution, Bi(NO3)3·5H2O, SrCl2·6H2O, 180 °C for 12 h | [ | ||||||||
solid state reaction: Sr(NO3)2, Bi2O3, TiO2, KCl, NaCl, 850 °C for 10 h | [ | |||||||||||
Pb2Bi4Ti5O18 | orthorhombic | Aba2 | solid state reaction: PbO, Bi2O3, TiO2, salt (KCl, NaCl, Na2SO4, NaH2PO4), 900 °C for 15 h | [ | ||||||||
CaBi2B2O7 | orthorhombic | Pna21 | solid state reaction: Bi2O3, H3BO3, CaCO3, 500 °C for 2 h and then 680 °C for 6 h | [ | ||||||||
SrBi2B2O7 | hexagonal | P63 | solid state reaction: Bi2O3, H3BO3, SrCO3, 500 °C for 2 h and then 690 °C for 6 h | [ | ||||||||
Sillén- Aurivillius | Bi4NbO8Br | orthorhombic | P21cn | solid state reaction: Bi2O3, Nb2O5, BiOBr, 750 °C for 4 h | [ | |||||||
Bi4VO8Cl | orthorhombic | P21cn | hydrothermal: Bi(NO3)3·5H2O, BiOCl, HNO3, NH4VO3, NH3·OH, pH = 3, 160 °C for 20 h | [ | ||||||||
solid state reaction: Bi(NO3)3·5H2O, BiOCl, NH4VO3, 700 °C for 24 h | [ | |||||||||||
Bi4SbO8Cl | orthorhombic | P21cn | solid state reaction: Bi2O3, Sb2O3, NH4Cl, 850 °C for 6 h | [ | ||||||||
Bi3LaNbO8X (X = Cl, Br) | orthorhombic | P21cn | solid state reaction: Bi2O3, La2O3 (preheated at 950 °C), Nb2O5, BiOCl or BiOBr, 700 °C for 12 h | [ | ||||||||
Bi4Ti0.5W0.5O8Cl | — | — | solid state reaction: Bi2O3, BiOCl, TiO2, WO3, 720 °C for 24 h | [ | ||||||||
Bi6NbWO14Cl | orthorhombic | Fmmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, WO3, 800 °C for 20 h | [ | ||||||||
Bi5X (X = Sr, Pb, Ba)Ti3O14Cl | orthorhombic | P2an | solid state reaction: XBiO2Cl (X = Pb, Sr) (PbO or SrCO3, BiOCl 700 °C for 10 h), Bi4Ti3O12 (Bi2O3, TiO2, 800 °C for 1 h, then 1000 °C for 10 h), 900 °C for 20 h | [ | ||||||||
BaxBi5TiyOzCl | tetragonal | P4/mmm | solid state reaction: BaBiO2Cl, Bi4TixOy, 900 °C for 10 h | [ | ||||||||
Other | Bi(IO3)3 | monoclinic | P2/n | hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||
BiCuSeO | tetragonal | P4/nmm | solid state reaction: Bi2O3, Cu, Bi and Se powders, 300 °C for 5 h and then 700 °C for 10 h | [ | ||||||||
Bi4B2O9 | monoclinic | P2/c | solid-state reaction: Bi2O3, H3BO3, 600 °C for 10 h | [ | ||||||||
Bi2Ga4O9 | orthorhombic | Pbam | hydrothermal: Bi(NO3)3·5H2O, NaGaO2, pH = 9.13, 200 °C for 12 h | [ | ||||||||
solid state reaction: Bi2O3, Ga2O3, 600 °C for 10 h, 800 °C for 10 h; Sol-gel method: Ga2O3 in HNO3 solution at 180 °C for 10 h, Bi(NO3)3·5H2O, citric acid, 200, 250, and 500 °C, respectively, 10 h, then 670 °C for 10 h | [ | |||||||||||
Bi2Al4O9 | orthorhombic | Pbam | Co-precipitation and calcination: Bi(NO3)3·5H2O, starch, Al(NO3)3·9H2O solution, 100 °C for 1 h, then 120 °C for 1 h, calcinated at 800°C for 1 h | [ | ||||||||
Bi12MnO20 | cubic | I23 | sol-gel method: citric acid monohydrate, Bi(NO3)3·5H2O, EDTA, ammonia, C4H6MnO4·4H2O, water-bath (80 °C), further scorched 2 h at 400 °C, calcinated at 550 °C for 4 h | [ | ||||||||
Bi12GeO20 | cubic | I23 | hydrothermal: Bi(NO3)3·5H2O, GeO2, NaOH solution, 180°C for 20 h | [ | ||||||||
BiPW12O40 | tetragonal | P4/nmm | co-precipitation and calcination: Bi(NO3)3·5H2O, ethylene glycol, H3PW12O40 solution, dried at 130 °C, then 200-400 °C for 3 h | [ | ||||||||
Bi4MoO9 | cubic | F | hydrothermal: Bi(NO3)3·5H2O, HNO3, (NH4)6Mo7O24·4H2O, oleylamine, NaOH, pH = 7, 160 °C for 24 h | [ | ||||||||
Bi6Mo2O15 | monoclinic | P2/c | solid-state reaction: Bi(NO3)3·5H2O, Na2MoO4·2H2O and NaNO3, 500 °C for 10 h | [ | ||||||||
Bi6Cr2O15 | orthorhombic | Ccc2 | co-precipitation and calcination: Cr(NO3)3, Bi(NO3)3, NaOH solution, filtrated and dried, then calcinated at 500 °C for 2 h | [ | ||||||||
Bi6S2O15 | — | — | hydrothermal: Na2SO4 solution, Bi(NO3)3·5H2O solution, NH3·H2O, 180 °C for 24 h | [ | ||||||||
Bi14MoO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, (NH4)6Mo7O24·4H2O, NH3·H2O, solution was stirred, filtrated and dried, then calcinated at 650 °C for 2 h | [ | ||||||||
Bi14CrO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, mannitol, Cr(NO3)3, dried at 80 °C to the state of a xerogel, then calcinated at 550 °C for 3 h | [ | ||||||||
Cr2Bi3O11 | — | — | co-precipitation: Bi(NO3)3·5H2O, Na2CrO4, deionized water, stirred at 80 °C for 60 min | [ | ||||||||
Bi2(CrO4)3 | — | — | co-precipitation: Bi(NO3)3·5H2O, glacial acetic acid, Na2CrO4 solution | [ | ||||||||
Bi8(CrO4)O11 | monoclinic | P21/m | hydrothermal: NaBiO3 solution, Cr(NO)3 solution, 180 °C for 6 h | [ | ||||||||
BiMXO5 (M = Mg, Cd, Ni, Co, Pb; X = V, P | monoclinic | P21/n | solid-state reaction: 750-815 °C for 24 h | [ | ||||||||
Na3Bi2(PO4)3 | hexagonal | P63/m | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
Na3Bi(PO4)2 | monoclinic | P2/c | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
ZnBi2O4 | tetragonal | P4/ncc | sol-gel method and calcination: Bi(NO3)3·5H2O, acetone, glycerol, nitric acid, Zn(NO3)2, 120 °C dried for 1 h, 500 °C calcined for 3 h | [ | ||||||||
slid-state reaction: Bi(NO3)3·5H2O, Zn(NO3)2·6H2O, nitric acid, NaOH, 75 °C stirring for 24 h, 450 °C calcined for 3 h | [ | |||||||||||
CuBi2O4 | tetragonal | P4/ncc | hydrothermal: Cu(CH3COO)2·H2O, Bi(NO3)3·5H2O, KOH solution, 150 °C for 12 h | [ | ||||||||
K2Bi(PO4)(MoO4) | orthorhombic | Ibca | slid-state reaction: Bi2O3, K2CO3, NH4H2PO4, MoO3, 500, 600 and 700 °C for 10 h | [ | ||||||||
Bi2O(OH)2SO4 | monoclinic | P21/c | water-bath method: Bi(NO3)3·5H2O, distilled water, Na2SO4, 60 °C for 6 h in water bath, pH = 1-2 | [ | ||||||||
Bi3O(OH)(PO4)2 | triclinic | P1⁻ | hydrothermal: Bi(NO3)3·5H2O, NH4H2PO4 solution, pH = 10, 180 °C for 48 h | [ | ||||||||
Bi(C2O4)OH | orthorhombic | Pnma | precipitation: Bi(NO3)3·5H2O, deionized water, H2C2O4·2H2O, 1 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, oxalate source, 120 °C for 12 h | [ | |||||||||||
Bi6O6(OH)2(NO3)4·2H2O | — | — | hydrolysis: Bi(NO)3·5H2O, 2-methoxyethanol, urea solution, 10 h | [ | ||||||||
Bi6O4(OH)4(NO3)6·4H2O | mnoclinic | P21/c | hydrolysis: Bi(NO)3·5H2O, 120 °C for 24 h in vacuum oven | [ |
Table 1 The structure type, space group and synthesis methods of PBB photocatalysts.
Structure type | Photocatalyst | Crystal system | Space group | Synthesis method | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sillén | Bi12O17Cl2 | tetragonal | P4/nmm | hydrothermal: Bi(NO3)3·5H2O, KCl, pH = 12.6, 160 °C for 24 h | [ | |||||||
solid-state reaction: α-Bi2O3, HCl, 350-400 °C for 2 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, HCl solution, PVP, NaOH solution, 160 °C for 6 h, then annealing at 500 °C for 4 h | [ | |||||||||||
solid-state reaction: BiOCl, Bi2O3, 600 °C in air for 12 h | [ | |||||||||||
Bi12O17Br2 | tetragonal | P4/nmm | hydrolysis: hemispherical: Bi(NO3)3·5H2O, urea, CTAB; flowerlike: Bi(NO3)3·5H2O, EG, CTAB; platelike: Bi(NO3)3·5H2O, HOAc, CTAB | [ | ||||||||
hydrothermal: BiBr3, absolute alcohol, NaOH solution, 150 °C for 24 h | [ | |||||||||||
Bi24O31Cl10 | monoclinic | A21/m1 | electrochemistry: anode-Bi foil, cathode-Ni foil, electrolyte is NaCl and EDTA, pH = 12 (NaOH solution), 10 V for 2 h | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAC, NaOH solution, 400-800 °C | [ | |||||||||||
hydrothermal: Bi(NO3)3·5H2O, NaCl, pH = 10.3, 160 °C for 18.5 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, Ethylene glycol, NH4Cl, 160 °C for 12 h and calcination 500 °C for 4 h | [ | |||||||||||
Bi24O31Br10 | monoclinic | A21/m1 | microwave: Bi(NO3)3·5H2O, CTAB, ethylene glycol, pH = 10.5 (NaOH solution), microwave reaction at 400 W for 3 min | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAB, NaOH solution, then heat treatment under 300-800 °C | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, starch, glycerol, CTAB, NaOH solution, 160 °C for 16 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, ethylene glycol, NH4Br, ethanol amine, 160 °C for 12 h | [ | |||||||||||
Bi4O5I2 | monoclinic | P1211 | solvothermal: Bi(NO3)3·5H2O, glycerol, NaI, 130 °C for 12 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, KI, EG, pH=9, 150 °C for 12 h | [ | |||||||||||
microwave: Bi(NO3)3·5H2O, KI, EG, H2O, 120 °C for 12 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, [Hmim]I, mannitol solution, pH = 12 (NaOH solution), 140 °C for 24 h | [ | |||||||||||
Bi5O7Br | orthorhombic | cmca | self-assembled method: Bi(NO3)3·5H2O, oleylamine, KBr, water | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, KBr, pH = 13, 160 °C for 16 h | [ | |||||||||||
Bi3O4Br | orthorhombic | pnan | hydrothermal: Bi(NO3)3·5H2O, CTAB, pH = 11.5, 160 °C for 18 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, methanol, CTAB, PVP, pH = 12.3, 180 °C for 24 h | [ | |||||||||||
Bi2EuO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Eu2O3, 800 °C for 4 h | [ | ||||||||
Bi2NdO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Nd2O3, 800 °C for 4 h | [ | ||||||||
LiBi3O4Cl2 | tetragonal | I4/mmm | solid state reaction: BiOCl, Li2CO3 and Bi2O3, 500 °C for 6 h, then re-heated at 500, 600, 700 °C or 800 for 12 h | [ | ||||||||
SrBiO2Cl | orthorhombic | Cmcm | solid state reaction: SrCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
BaBiO2Cl | orthorhombic | Cmcm | solid state reaction: BaCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
PbBiO2Cl | tetragonal | I4/mmm | hydrothermal: BiCl3, NaOH, (CH₃COO)2Pb·3H2O, 160 °C for 20 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [C16mim]Cl, PVP, 160 °C for 24 h | [ | |||||||||||
solid state reaction: PbO, BiOCl, 700 °C for 10 h | [ | |||||||||||
Pb0.6Bi1.4O2Cl1.4 | tetragonal | I4/mmm | top-down wet chemistry desalination: first, Pb0.6Bi1.4Cs0.6O2Cl was synthesized by heating BiOCl, PbO, CsCl at 800 °C for 5 d; next, the material and water were mixed with an ultrasonic bath for 14 d | [ | ||||||||
BaBiO2Br | tetragonal | I4/mmm | solid state reaction: BaCO3, BiOBr, 900 °C for 4 h | [ | ||||||||
SrBiO2Br | tetragonal | Cmcn | solid state reaction: SrCO3, BiOBr, 700 °C for 4 h | [ | ||||||||
PbBiO2I | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH₃COO)2Pb, NaI, 180 °C for 24 h | [ | ||||||||
solvothermal: Bicc(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [Hmim]I, 180 °C for 24 h | [ | |||||||||||
CdBiO2Br | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH3COO)2Cd·2H2O, KBr, pH = 10 (NH3·H2O), 180 °C for 12 h | [ | ||||||||
Bi2YO4Cl | tetragonal | P4/mmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, 800 °C for 12 h | [ | ||||||||
Bi2O2(S, Se) | orthorhombic | Pnnm | hydrothermal: Bi(NO3)3·5H2O, SC(NH2)2 or SeC(NH2)2, LiOH·H2O, 200 °C for 12 h | [ | ||||||||
Sillén- related | Bi2O2(OH)(NO3) | orthorhombic | Cmc21 | hydrothermal: Bi(NO3)3·5H2O, pH = 1, 1.5, 2, 3, 4, 180 °C for 24 h | [ | |||||||
hydrothermal: Bi(NO3)3·5H2O, glacial acetic acid, 150 °C for 5 h | [ | |||||||||||
Bi2O2[BO2(OH)] | monoclinic | Cm | hydrothermal: Bi2B2O9, water, 200 °C for 24 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, H3BO3, PVP, 120°C for 24 h | [ | |||||||||||
BiOIO3 | orthorhombic | Pca21 | hydrothermal: Bi(NO3)3·5H2O, KIO3, 150 °C for 5 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||||||
Aurivillius | Bi2CrO6 | triclinic | P-1 | hydrothermal: Bi(NO3)3·5H2O, K2CrO4, nitric acid, ammonia, 180 °C for 6 h | [ | |||||||
CdBi2Nb2O9 | orthorhombic | P212121 | combustion method: Cd(NO3)2, Bi(NO3)3·5H2O, Nb(OH)5; urea, glycine, ammonium nitrate and starch as a fuel, 600 °C for 4 h | [ | ||||||||
Bi2(Nb, Ta)O5F | tetragonal | I4/mmm | hydrothermal: Nb2O5 or Ta2O5, HF, Bi(NO3)3·5H2O, EG, 150 °C for 12 h | [ | ||||||||
SrBi4Ti4O15 | orthorhombic | A21am | hydrothermal: Ti(OC4H9)4, NaOH solution, Bi(NO3)3·5H2O, SrCl2·6H2O, 180 °C for 12 h | [ | ||||||||
solid state reaction: Sr(NO3)2, Bi2O3, TiO2, KCl, NaCl, 850 °C for 10 h | [ | |||||||||||
Pb2Bi4Ti5O18 | orthorhombic | Aba2 | solid state reaction: PbO, Bi2O3, TiO2, salt (KCl, NaCl, Na2SO4, NaH2PO4), 900 °C for 15 h | [ | ||||||||
CaBi2B2O7 | orthorhombic | Pna21 | solid state reaction: Bi2O3, H3BO3, CaCO3, 500 °C for 2 h and then 680 °C for 6 h | [ | ||||||||
SrBi2B2O7 | hexagonal | P63 | solid state reaction: Bi2O3, H3BO3, SrCO3, 500 °C for 2 h and then 690 °C for 6 h | [ | ||||||||
Sillén- Aurivillius | Bi4NbO8Br | orthorhombic | P21cn | solid state reaction: Bi2O3, Nb2O5, BiOBr, 750 °C for 4 h | [ | |||||||
Bi4VO8Cl | orthorhombic | P21cn | hydrothermal: Bi(NO3)3·5H2O, BiOCl, HNO3, NH4VO3, NH3·OH, pH = 3, 160 °C for 20 h | [ | ||||||||
solid state reaction: Bi(NO3)3·5H2O, BiOCl, NH4VO3, 700 °C for 24 h | [ | |||||||||||
Bi4SbO8Cl | orthorhombic | P21cn | solid state reaction: Bi2O3, Sb2O3, NH4Cl, 850 °C for 6 h | [ | ||||||||
Bi3LaNbO8X (X = Cl, Br) | orthorhombic | P21cn | solid state reaction: Bi2O3, La2O3 (preheated at 950 °C), Nb2O5, BiOCl or BiOBr, 700 °C for 12 h | [ | ||||||||
Bi4Ti0.5W0.5O8Cl | — | — | solid state reaction: Bi2O3, BiOCl, TiO2, WO3, 720 °C for 24 h | [ | ||||||||
Bi6NbWO14Cl | orthorhombic | Fmmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, WO3, 800 °C for 20 h | [ | ||||||||
Bi5X (X = Sr, Pb, Ba)Ti3O14Cl | orthorhombic | P2an | solid state reaction: XBiO2Cl (X = Pb, Sr) (PbO or SrCO3, BiOCl 700 °C for 10 h), Bi4Ti3O12 (Bi2O3, TiO2, 800 °C for 1 h, then 1000 °C for 10 h), 900 °C for 20 h | [ | ||||||||
BaxBi5TiyOzCl | tetragonal | P4/mmm | solid state reaction: BaBiO2Cl, Bi4TixOy, 900 °C for 10 h | [ | ||||||||
Other | Bi(IO3)3 | monoclinic | P2/n | hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||
BiCuSeO | tetragonal | P4/nmm | solid state reaction: Bi2O3, Cu, Bi and Se powders, 300 °C for 5 h and then 700 °C for 10 h | [ | ||||||||
Bi4B2O9 | monoclinic | P2/c | solid-state reaction: Bi2O3, H3BO3, 600 °C for 10 h | [ | ||||||||
Bi2Ga4O9 | orthorhombic | Pbam | hydrothermal: Bi(NO3)3·5H2O, NaGaO2, pH = 9.13, 200 °C for 12 h | [ | ||||||||
solid state reaction: Bi2O3, Ga2O3, 600 °C for 10 h, 800 °C for 10 h; Sol-gel method: Ga2O3 in HNO3 solution at 180 °C for 10 h, Bi(NO3)3·5H2O, citric acid, 200, 250, and 500 °C, respectively, 10 h, then 670 °C for 10 h | [ | |||||||||||
Bi2Al4O9 | orthorhombic | Pbam | Co-precipitation and calcination: Bi(NO3)3·5H2O, starch, Al(NO3)3·9H2O solution, 100 °C for 1 h, then 120 °C for 1 h, calcinated at 800°C for 1 h | [ | ||||||||
Bi12MnO20 | cubic | I23 | sol-gel method: citric acid monohydrate, Bi(NO3)3·5H2O, EDTA, ammonia, C4H6MnO4·4H2O, water-bath (80 °C), further scorched 2 h at 400 °C, calcinated at 550 °C for 4 h | [ | ||||||||
Bi12GeO20 | cubic | I23 | hydrothermal: Bi(NO3)3·5H2O, GeO2, NaOH solution, 180°C for 20 h | [ | ||||||||
BiPW12O40 | tetragonal | P4/nmm | co-precipitation and calcination: Bi(NO3)3·5H2O, ethylene glycol, H3PW12O40 solution, dried at 130 °C, then 200-400 °C for 3 h | [ | ||||||||
Bi4MoO9 | cubic | F | hydrothermal: Bi(NO3)3·5H2O, HNO3, (NH4)6Mo7O24·4H2O, oleylamine, NaOH, pH = 7, 160 °C for 24 h | [ | ||||||||
Bi6Mo2O15 | monoclinic | P2/c | solid-state reaction: Bi(NO3)3·5H2O, Na2MoO4·2H2O and NaNO3, 500 °C for 10 h | [ | ||||||||
Bi6Cr2O15 | orthorhombic | Ccc2 | co-precipitation and calcination: Cr(NO3)3, Bi(NO3)3, NaOH solution, filtrated and dried, then calcinated at 500 °C for 2 h | [ | ||||||||
Bi6S2O15 | — | — | hydrothermal: Na2SO4 solution, Bi(NO3)3·5H2O solution, NH3·H2O, 180 °C for 24 h | [ | ||||||||
Bi14MoO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, (NH4)6Mo7O24·4H2O, NH3·H2O, solution was stirred, filtrated and dried, then calcinated at 650 °C for 2 h | [ | ||||||||
Bi14CrO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, mannitol, Cr(NO3)3, dried at 80 °C to the state of a xerogel, then calcinated at 550 °C for 3 h | [ | ||||||||
Cr2Bi3O11 | — | — | co-precipitation: Bi(NO3)3·5H2O, Na2CrO4, deionized water, stirred at 80 °C for 60 min | [ | ||||||||
Bi2(CrO4)3 | — | — | co-precipitation: Bi(NO3)3·5H2O, glacial acetic acid, Na2CrO4 solution | [ | ||||||||
Bi8(CrO4)O11 | monoclinic | P21/m | hydrothermal: NaBiO3 solution, Cr(NO)3 solution, 180 °C for 6 h | [ | ||||||||
BiMXO5 (M = Mg, Cd, Ni, Co, Pb; X = V, P | monoclinic | P21/n | solid-state reaction: 750-815 °C for 24 h | [ | ||||||||
Na3Bi2(PO4)3 | hexagonal | P63/m | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
Na3Bi(PO4)2 | monoclinic | P2/c | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
ZnBi2O4 | tetragonal | P4/ncc | sol-gel method and calcination: Bi(NO3)3·5H2O, acetone, glycerol, nitric acid, Zn(NO3)2, 120 °C dried for 1 h, 500 °C calcined for 3 h | [ | ||||||||
slid-state reaction: Bi(NO3)3·5H2O, Zn(NO3)2·6H2O, nitric acid, NaOH, 75 °C stirring for 24 h, 450 °C calcined for 3 h | [ | |||||||||||
CuBi2O4 | tetragonal | P4/ncc | hydrothermal: Cu(CH3COO)2·H2O, Bi(NO3)3·5H2O, KOH solution, 150 °C for 12 h | [ | ||||||||
K2Bi(PO4)(MoO4) | orthorhombic | Ibca | slid-state reaction: Bi2O3, K2CO3, NH4H2PO4, MoO3, 500, 600 and 700 °C for 10 h | [ | ||||||||
Bi2O(OH)2SO4 | monoclinic | P21/c | water-bath method: Bi(NO3)3·5H2O, distilled water, Na2SO4, 60 °C for 6 h in water bath, pH = 1-2 | [ | ||||||||
Bi3O(OH)(PO4)2 | triclinic | P1⁻ | hydrothermal: Bi(NO3)3·5H2O, NH4H2PO4 solution, pH = 10, 180 °C for 48 h | [ | ||||||||
Bi(C2O4)OH | orthorhombic | Pnma | precipitation: Bi(NO3)3·5H2O, deionized water, H2C2O4·2H2O, 1 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, oxalate source, 120 °C for 12 h | [ | |||||||||||
Bi6O6(OH)2(NO3)4·2H2O | — | — | hydrolysis: Bi(NO)3·5H2O, 2-methoxyethanol, urea solution, 10 h | [ | ||||||||
Bi6O4(OH)4(NO3)6·4H2O | mnoclinic | P21/c | hydrolysis: Bi(NO)3·5H2O, 120 °C for 24 h in vacuum oven | [ |
Fig. 9. Different morphologies of several PBB photocatalysts. (a) SEM image of Bi24O31Cl10 [127]. Copyright 2016, Tsinghua University Press and Springer-Verlag Berlin Heidelberg. (b) FESEM image of Bi4O5I2 [128]. Copyright 2016, Elsevier Ltd. (c) TEM image of Bi3O4Br [103]. Copyright 2017, Royal Society of Chemistry. (d) SEM image of Bi24O31Br10 [100]. Copyright 2016, Elsevier Ltd. (e) SEM image of Bi2O2(OH)2(NO3) [107]. Copyright 2017, Wiley-VCH. (f) TEM image of Bi12O17Br2 [95]. Copyright 2016, Elsevier Ltd. (g) TEM image of Bi2O2S2 [90]. Copyright 2021, Science China Press and Springer-Verlag GmbH Germany. (h) SEM image of Bi(C2O4)OH [126]. Copyright 2016, Royal Society of Chemistry. (i) HADDF-STEM image of Bi5O7Br [93]. Copyright 2017, Wiley-VCH.
Fig. 10. TEM image (a), SAED pattern (b) and crystal structure (c) of Bi2O2(OH)(NO3) in a top view or along the [001] direction. (d) The proposed model of efficient charge separation of Bi2O2(OH)(NO3) [51]. Copyright 2015, Royal Society of Chemistry.
Fig. 11. (a) Schematic diagrams for AgI/Bi4O5I2 Z scheme [135]. Copyright 2018, Elsevier Ltd. (b) Schematic diagrams for efficient charge separation process through the {001} active facets of BiOI and the proposed charge transfer mechanism via p-BiOI/n-Bi12O17Cl2 p-n junction [136]. Copyright 2018, Elsevier Ltd. (c) PbBiO2I/ Bi5O7I/g-C3N4 ternary heterostructured photocatalysts. [143] Copyright 2018, Elsevier Ltd.
Fig. 12. (a) SEM images and schematic of the morphology evolution of BiOIO3 samples. (b) The calculated DOS and scheme of the band alignments of the {010} and {100} facets of BiOIO3. (c) Crystal structure model with photogenerated electrons and holes of facet junction BiOIO3 [197]. Copyright 2018, Wiley-VCH.
Fig. 13. (a) Schematic diagram of charge separation of metal/NPBB photocatalysts. (b) HTEM images of Pt/Bi12O17Cl2 [198]. Copyright 2016, Elsevier Ltd. (c) Separation process of photocharges over Bi/Bi4O5I2 [68]. Copyright 2018, Elsevier Ltd. (d) Schematic diagram of charge separation of carbon/NPBB photocatalysts. (e) HTEM images of CODs/Bi4O5I2 [202]. Copyright 2018, Elsevier Ltd. (f) TEM of N-doped CQDs modified Bi4O5I2 hollow nanotubes [203]. Copyright 2018, Elsevier Ltd.
Fig. 14. The scheme of polarization-promoted bulk charge separation (a) and surface charge separation (b) [212]. Copyright 2019, Wiley-VCH. (c) Crystal structure of V-BiOIO3 along a-b plane and along b-c plane. (d) The scheme of polarization direction and charge transfer direction [216]. Copyright 2017, Wiley-VCH.
Fig. 15. (a) Low-temperature EPR spectra of Bi5O7Br nanotubes before and after light irradiation. (b) Fitted XPS Bi 4f spectra of Bi5O7Br nanotubes [93]. Copyright 2017, Wiley-VCH. (c) HADDF-STEM images of defect-rich Bi3O4Br. (d) Schematic representations of trapped positrons of defect-rich Bi3O4Br. (e) XPS O 1s spectra of Bi3O4Br samples [223]. Copyright 2019, Wiley-VCH.
Fig. 16. (a) Schematic illustration of the proposed carbon doping strategy of carbon-doped Bi24O31Cl10. (b) TG curves. (c) High-resolution C 1s XPS spectra. (d) FT-IR spectra of carbon-doped Bi24O31Cl10 samples. (e) Isosurface conduction, impurity level and valence charge density of C-doped and un-doped Bi24O31Cl10. (f) The schematic illustration of the electronic band structures [224]. Copyright 2018, Royal Society of Chemistry. (g) UV-vis DRS of interlayer-I-doped BiOIO3 samples. (h) DOS of pure BiOIO3 and interlayer-I-doped BiOIO3. (i) Schematic illustration of the photocatalytic enhancement mechanism of interlayer-I-doped BiOIO3 in photocatalytic oxidation of NO [228]. Copyright 2016, Royal Society of Chemistry.
Fig. 17. (a) EDX elemental maps of Bi2O2(OH)(NO3)-Br. (b) XPS spectra of Bi2O2(OH)(NO3)-Br3 with Ar+ sputtering for different times. (c) Surface photovoltage spectra of Bi2O2(OH)(NO3) samples. (d) Charge difference of Bi2O2(OH)(NO3)-Br. (e) Charge difference of CO2 and H+ absorbed Bi2O2(OH)(NO3)-Br [234]. Copyright 2019, Wiley-VCH. (h) DRIFT spectra of Bi24O31Br10(OH)δ, BiOBr, and Bi(OH)3. (g) Model of the two-dimensional material that is characterized by two types of basic sites (surface OH and O atoms with low coordination number) and working principle of the Bi24O31Br10(OH)δ [236]. Copyright 2018, American Chemical Society.
Fig. 19. (a) Schematic diagram of photocatalytic water splitting mechanism and redox potential of H2 and O2 evolution. (b) H2 and O2 evolution using a mixture of Ru-SrTiO3:Rh and Bi6NbWO14Cl in FeCl3 solution (closed circles) and in distilled water (open circles) under visible light irradiation [62]. Copyright 2017, The Chemical Society of Japan. (c) Scheme of Z-scheme overall water splitting system constructed by the Ru/SrTiO3:Rh and IrO2/Bi2CrO6 with Fe3+/2+ as the redox mediator and (d) Time course of the Z-scheme water splitting system [109]. Copyright 2023, Wiley-VCH.
Fig. 20. (a) The thermodynamic redox potentials for various CO2 reduction products. (b) Reductive and oxidative production of SrBi4Ti4O15 during CO2 reduction [55]. (c) In-situ DRIFTS for CO2 photoreduction on SrBi4Ti4O15 under light irradiation for different time [55]. Copyright 2018, Elsevier Ltd. (d) GC-MS spectra of the products with 13CO2 [42]. (e) Photocatalytic CO2RR products under full-spectrum light irradiation [42]. (f) Isosurface of differential charge density of ultrathin Pb0.6Bi1.4O2Cl1.4 [42]. Copyright 2022, Springer Nature.
Catalyst | Condition | Product | Performance (μmol h−1 g−1) | Ref. |
---|---|---|---|---|
Co SAC-Bi3O4Br | catalyst, water, 0.08 MPa CO2 gas, 300 W Xe lamp | CO, CH4 | CO: 107.1; CH4: 0.16 | [ |
Bi/Bi4O5I2 | catalyst, CO2/H2O vapor, 300 W Xe lamp | CO, CH4 | CO: 40.02; CH4:7.19 | [ |
Bi4O5I2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 19.82; CH4: 0.22 | [ |
Au@Bi12O17Br2 | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO, CH4, C2H6 | CO: ~17; CH4: 2.29; C2H6: 29.26 | [ |
Bi12O17Br2 nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 34.5 | [ |
Bi12O17Cl2-OV nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 48.6 | [ |
CdS/Bi12O17Cl2 | catalyst with 0.5 wt% Pt load, ultrapure water, CO2 gas, 300 W Xe lamp | CH4 | CH4: 1.28 | [ |
g-C3N4/ Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp with 420 nm filter | CH4 | CH4: 24.4 | [ |
Carbonized polymer Dots/Bi12O17Cl2 | catalyst, deionized water, 80 KPa CO2 gas, 300 W Xe lamp with 400 nm cut-off filter | CO | CO: 3.21 | [ |
Ag/AgCl cluster/Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 9.1 | [ |
CoPc@Bi24O31Br10 | catalyst, DMF, water, TEA, CO2 gas, 20 W LED | CH3OH | CH3OH: 145.2 | [ |
CdS-Bi24O31Br10 | catalyst, acetonitrile, water, TEA, CO2 gas, 300 W Xe lamp with a cut-off filter > 420 nm | CH3OH | CH3OH: ~72.5 | [ |
VBiO-Bi24O31Br10 | catalyst, H2O, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 24.9 | [ |
Bi24O31Cl10-OV | catalyst, distilled water, CO2 gas, 300 W Xe lamp | CO | CO: 0.9 | [ |
C-doped Bi24O31Cl10 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 2.54 | [ |
Sn-BiOBr/BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 7.40 | [ |
BiOIO3-OV nanostrips | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 17.33 | [ |
BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.30 | [ |
Thickness of BiOIO3 nanoplates | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 5.42 | [ |
g-C3N4/Bi2O2[BO2(OH)] | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.09 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 14.84 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, H2O, 100 KPa CO2 gas, 300 W Xe lamp with AM 1.5G filter | CO | CO: ~5.4 | [ |
Bi2O2(NO3)(OH)-X (X = Cl, Br, I) | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 8.12 | [ |
Bi2Al4O9/β-Bi2O3 | catalyst, water, 0.2 MPa CO2 gas, 300 W Xe lamp | CO | CO: 1.32 | [ |
Bi2O2S-OV | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm filter | CH4 | CH4: 16.45 | [ |
Ni-Bi2O2S | Catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 50.28 | [ |
Fe-Bi2O2S | catalyst, deionized water, 0.1 MPa CO2, 300 W Xe lamp | CO, CH4 | CO: 2.71; CH4: 1.74 | [ |
Fe2O3/graphene/Bi2O2S | catalyst, deionized water, CO2, 300 W Xe lamp with a 420 nm cutoff filter | CO, CH4, C2H4 | CO: 13.00; CH4: 4.27; C2H4: 2.88 | [ |
Surface iodinated Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm cutoff filter | CH4 | CH4: 53.35 | [ |
Bi2O2S@TpPa-2-COF-15 | catalyst, TEOA, acetonitrile, water, 300 W Xe lamp | CO, CH4 | CO: 19.50; CH4: 6.20 | [ |
Ag2O/Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 800 nm filter | CO, CH4 | CO: 14.49; CH4: 12.06 | [ |
Pt/ZnO/Er-BiCuSeO | catalyst, CO2:H2 = 1:1, 150 °C, 300 W Xe lamp | CO | CO: 2.91 | [ |
Pb0.6Bi1.4O2Cl1.4 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4, CH3OH | CO: ~4.5; CH4: ~ <2; CH3OH: ~6.6 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: ~<2; CH4: 19.8 | [ |
N-CQDs/Bi4MoO9 | catalyst, H2O, 88 KPa CO2, 300 W Xe lamp | CO | CO: 3.24 | [ |
Bi6Mo2O15 | — | CH4 | CH4: 17.46 ppm h-1 g-1 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 19.8 ppm h-1 g-1 | [ |
Bi2O3 QDs/SrBi4Ti4O15 | catalyst, Na2CO3, H2O, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 18.25; CH4: 7.55 | [ |
Table 2 The reaction condition and performance of photocatalytic CO2 reduction of PBB photocatalysts.
Catalyst | Condition | Product | Performance (μmol h−1 g−1) | Ref. |
---|---|---|---|---|
Co SAC-Bi3O4Br | catalyst, water, 0.08 MPa CO2 gas, 300 W Xe lamp | CO, CH4 | CO: 107.1; CH4: 0.16 | [ |
Bi/Bi4O5I2 | catalyst, CO2/H2O vapor, 300 W Xe lamp | CO, CH4 | CO: 40.02; CH4:7.19 | [ |
Bi4O5I2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 19.82; CH4: 0.22 | [ |
Au@Bi12O17Br2 | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO, CH4, C2H6 | CO: ~17; CH4: 2.29; C2H6: 29.26 | [ |
Bi12O17Br2 nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 34.5 | [ |
Bi12O17Cl2-OV nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 48.6 | [ |
CdS/Bi12O17Cl2 | catalyst with 0.5 wt% Pt load, ultrapure water, CO2 gas, 300 W Xe lamp | CH4 | CH4: 1.28 | [ |
g-C3N4/ Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp with 420 nm filter | CH4 | CH4: 24.4 | [ |
Carbonized polymer Dots/Bi12O17Cl2 | catalyst, deionized water, 80 KPa CO2 gas, 300 W Xe lamp with 400 nm cut-off filter | CO | CO: 3.21 | [ |
Ag/AgCl cluster/Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 9.1 | [ |
CoPc@Bi24O31Br10 | catalyst, DMF, water, TEA, CO2 gas, 20 W LED | CH3OH | CH3OH: 145.2 | [ |
CdS-Bi24O31Br10 | catalyst, acetonitrile, water, TEA, CO2 gas, 300 W Xe lamp with a cut-off filter > 420 nm | CH3OH | CH3OH: ~72.5 | [ |
VBiO-Bi24O31Br10 | catalyst, H2O, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 24.9 | [ |
Bi24O31Cl10-OV | catalyst, distilled water, CO2 gas, 300 W Xe lamp | CO | CO: 0.9 | [ |
C-doped Bi24O31Cl10 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 2.54 | [ |
Sn-BiOBr/BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 7.40 | [ |
BiOIO3-OV nanostrips | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 17.33 | [ |
BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.30 | [ |
Thickness of BiOIO3 nanoplates | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 5.42 | [ |
g-C3N4/Bi2O2[BO2(OH)] | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.09 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 14.84 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, H2O, 100 KPa CO2 gas, 300 W Xe lamp with AM 1.5G filter | CO | CO: ~5.4 | [ |
Bi2O2(NO3)(OH)-X (X = Cl, Br, I) | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 8.12 | [ |
Bi2Al4O9/β-Bi2O3 | catalyst, water, 0.2 MPa CO2 gas, 300 W Xe lamp | CO | CO: 1.32 | [ |
Bi2O2S-OV | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm filter | CH4 | CH4: 16.45 | [ |
Ni-Bi2O2S | Catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 50.28 | [ |
Fe-Bi2O2S | catalyst, deionized water, 0.1 MPa CO2, 300 W Xe lamp | CO, CH4 | CO: 2.71; CH4: 1.74 | [ |
Fe2O3/graphene/Bi2O2S | catalyst, deionized water, CO2, 300 W Xe lamp with a 420 nm cutoff filter | CO, CH4, C2H4 | CO: 13.00; CH4: 4.27; C2H4: 2.88 | [ |
Surface iodinated Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm cutoff filter | CH4 | CH4: 53.35 | [ |
Bi2O2S@TpPa-2-COF-15 | catalyst, TEOA, acetonitrile, water, 300 W Xe lamp | CO, CH4 | CO: 19.50; CH4: 6.20 | [ |
Ag2O/Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 800 nm filter | CO, CH4 | CO: 14.49; CH4: 12.06 | [ |
Pt/ZnO/Er-BiCuSeO | catalyst, CO2:H2 = 1:1, 150 °C, 300 W Xe lamp | CO | CO: 2.91 | [ |
Pb0.6Bi1.4O2Cl1.4 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4, CH3OH | CO: ~4.5; CH4: ~ <2; CH3OH: ~6.6 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: ~<2; CH4: 19.8 | [ |
N-CQDs/Bi4MoO9 | catalyst, H2O, 88 KPa CO2, 300 W Xe lamp | CO | CO: 3.24 | [ |
Bi6Mo2O15 | — | CH4 | CH4: 17.46 ppm h-1 g-1 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 19.8 ppm h-1 g-1 | [ |
Bi2O3 QDs/SrBi4Ti4O15 | catalyst, Na2CO3, H2O, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 18.25; CH4: 7.55 | [ |
Catalyst | Condition | Performance | Ref. |
---|---|---|---|
Defect rich Bi3O4Br | catalyst, distilled water, N2, 300W Xe lamp | NH3: 50.8 μmol h-1 g-1 | [ |
Bi4O5I2-OV | catalyst, distilled water, IPA, N2, 300W Xe lamp | NH3: ~24 μmol h-1L-1 | [ |
Bi5O7Br- OV | catalyst, distilled water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 1380 μmol h-1 g-1 | [ |
Mo-Bi5O7Br-OV | catalyst, distilled water, 300W Xe lamp with 420 nm cutoff filter | NH3: 122.9 μmol h-1 g-1 | [ |
Bi5O7Br-OV | catalyst, deionized water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 12.72 mmol L-1 h-1 g-1 | [ |
Bi12O17Br2-OV | catalyst, deionized water, N2, 300W Xe lamp | NH3: 620.5 μmol h-1 L-1 | [ |
Table 3 Photocatalytic N2 fixation performance of PBB photocatalysts.
Catalyst | Condition | Performance | Ref. |
---|---|---|---|
Defect rich Bi3O4Br | catalyst, distilled water, N2, 300W Xe lamp | NH3: 50.8 μmol h-1 g-1 | [ |
Bi4O5I2-OV | catalyst, distilled water, IPA, N2, 300W Xe lamp | NH3: ~24 μmol h-1L-1 | [ |
Bi5O7Br- OV | catalyst, distilled water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 1380 μmol h-1 g-1 | [ |
Mo-Bi5O7Br-OV | catalyst, distilled water, 300W Xe lamp with 420 nm cutoff filter | NH3: 122.9 μmol h-1 g-1 | [ |
Bi5O7Br-OV | catalyst, deionized water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 12.72 mmol L-1 h-1 g-1 | [ |
Bi12O17Br2-OV | catalyst, deionized water, N2, 300W Xe lamp | NH3: 620.5 μmol h-1 L-1 | [ |
Fig. 21. (a) Quantitative determination of NH3 generated by Bi5O7Br samples under visible light (λ > 400 nm) irradiation [93]. (b) Proton NMR (400 MHz) spectra changes as a function of time using 50 vol% 15N2 as the N source [93]. Copyright 2017, Wiley-VCH. (c) Nitrogen adsorption energy on the surfaces of Bi5O7Br samples [278]. (d) Reaction energy diagram of nitrogen fixation catalyzed by Bi5O7Br samples [278]. Copyright 2020, American Chemical Society. (e) Quantitative determination of the generated NH3 by defect-rich SUC Bi3O4Br under light irradiation [223]. (f) In-situ DRFTIRS spectra from defect-rich SUC Bi3O4Br during the photocatalytic N2 fixation [223]. Copyright 2017, Wiley-VCH.
Fig. 22. (a,b) Band positions of the Bi24O31Br10(OH)δ and the redox potentials of O2 and isopropanol, nitrobenzene to azoxybenzene and aniline, oxygen to the superoxide radical, and isopropanol to acetone [235,236]. Copyright 2018, American Chemical Society. Copyright 2019, Wiley-VCH. (c) Photocatalytic performances of Bi-relevant photocatalysts for the oxidation of 1-octanol. (d) In-situ DRIFT of Bi24O31Br10(OH)δ with the presence of CD3OD under deaerated conditions [235]. Copyright 2019, Wiley-VCH.
Fig. 23. (a) Schematic illustration for the mechanism of dye sensitization degradation. (b) SEM images of Bi2O2(OH)(NO3). (c) RhB sensitized photodegradation on Bi2O2(OH)(NO3) samples under visible light. (d) Schematic diagram of dye sensitization degradation of Bi2O2(OH)(NO3) [239]. Copyright 2018, American Chemical Society.
Fig. 24. (a) Reactive oxygen species generated in the photocatalytic redox steps. The ESR signals of DMPO ·OH (b) and DMPO ·O2? (c) for Bi24O31Br10 and BiOBr [282]. Copyright 2018, Elsevier Ltd.
|
[1] | Yong Zhang, Junyi Qiu, Bicheng Zhu, Guotai Sun, Bei Cheng, Linxi Wang. Hollow spherical covalent organic framework supported gold nanoparticles for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2024, 57(2): 143-153. |
[2] | Jiali Liu, Huicong Dai, Xin Liu, Yiqi Ren, Maodi Wang, Qihua Yang. Pickering emulsion stabilized with charge separation and transfer modulated photocatalyst for enzyme-photo-coupled catalysis [J]. Chinese Journal of Catalysis, 2024, 57(2): 114-122. |
[3] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[4] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[7] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[8] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[9] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[10] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[11] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[12] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[13] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[14] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[15] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||