Chinese Journal of Catalysis ›› 2024, Vol. 66: 268-281.DOI: 10.1016/S1872-2067(24)60137-3
• Articles • Previous Articles Next Articles
Changshun Denga,1, Bingqing Gea,1, Jun Yaoa, Taotao Zhaoa, Chenyang Shena, Zhewei Zhanga, Tao Wangb, Xiangke Guoa, Nianhua Xuea, Xuefeng Guoa, Luming Penga, Yan Zhua, Weiping Dinga,*()
Received:
2024-07-27
Accepted:
2024-09-04
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: About author:
1Contributed equally to this work.
Supported by:
Changshun Deng, Bingqing Ge, Jun Yao, Taotao Zhao, Chenyang Shen, Zhewei Zhang, Tao Wang, Xiangke Guo, Nianhua Xue, Xuefeng Guo, Luming Peng, Yan Zhu, Weiping Ding. Surface engineering of TeOx modification on MoVTeNbO creates a high-performance catalyst for oxidation of toluene homologues to aldehydes[J]. Chinese Journal of Catalysis, 2024, 66: 268-281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60137-3
Fig. 1. (a) Atomic (001) surface model of the M1 phase MoVTeNbO complex oxides and the ODH reaction ODH of ethane to ethene. (b) V=O active site on the (001) plane of M1 phase and the oxidation of propane to acrylic acid. (c) Atomic (001) surface model of the M1 phase and the oxidation of toluene to maleic anhydride. (d) TeOx/MVTN with TeOx clusters on (001) surface of the M1 phase MoVTeNbO complex oxides in suitable density and self-organized structure presented in this work, for toluene oxidation by O2 to benzaldehyde.
Fig. 2. (a) Configuration of toluene adsorption (inset) and corresponding energy with the density of TeOx on MVTN. (b-d) Atomic models about toluene reaction to benzaldehyde over MVTN (b) and TeOx/MVTN (d), with intermediates and transition states, corresponding to the energy steps diagram (c). Atomic models about the reaction of benzaldehyde to benzoic acid over MVTN (e) and TeOx/MVTN (g), with the corresponding energy steps diagram (f). The reactive area of MVTN and TeOx/MVTN involved the V=O active site containing the pentameric ensembles (S4)2-S2-(S7)2.
Fig. 3. HRTEM images of MVTN (a) and TeOx/MVTN (b). Raman (c), FT-IR (d), EPR (e), and V 2p (f) XPS spectra of MVTN and TeOx/MVTN. Vanadium k-edge XAS spectra (V foil, VO2, and V2O5 were used as references). Normalized XANES (g), Radial distribution function from EXAFS (h), and wavelet transform maps (i) of Fourier transformed k2-weighted χ(k). (j-l) Tellurium k-edge XAS spectra (Te foil, TeO2, and H6TeO6 were used as references). Normalized XANES (j), EXAFS (k), and wavelet transform maps (l) of Fourier transformed k2-weighted χ(k).
Fig. 4. (a) Catalytic performance for toluene reaction over MVTN and TeOx/MVTN (toluene: 0.6 μL·min?1, vaporized in the line; O2: 5 mL·min?1; N2: 20 mL·min?1; cat.: 0.3 g; 400 °C). (b) Effect of TeOx loading on product selectivity (toluene: 1 μL·min?1, vaporized in the line; O2: 5 mL·min?1; N2: 20 mL·min?1; cat.: 0.3 g; 400 °C). (c) Effect of molar ratio of O2 to toluene on the catalytic performance over TeOx/MVTN (toluene: 0.6 μL·min?1, vaporized in the line; O2: 2-6 mL·min?1; N2: 19-23 mL·min?1; cat.: 0.3 g; 400 °C). (d) Effect of the WHSV on the catalytic performance over TeOx/MVTN (toluene: 0.6 μL·min?1, vaporized in the line; O2: 5 mL·min?1; N2: 0-30 mL·min?1; cat.: 0.3 g; 400 °C). (e) Prolonged reaction of TeOx/MVTN (toluene: 1 μL·min?1, vaporized in the line; O2: 5 mL·min?1; N2: 20 mL·min?1; cat.: 0.3 g; 350 °C). Arrhenius plots (f), dependences of the reaction rate on the partial pressure of toluene (g) and O2 (h) over MVTN and TeOx/MVTN (toluene: 0.2-1.6 μL·min?1, vaporized in the line; O2: 1-7 mL·min?1; balance N2; total flow rate: 25 mL·min?1; cat.: 0.3 g; 250-400 °C). MD simulation (MSD) of toluene (i) and O2 (j) molecules with different atomic concentrations on the surface of MVTN and TeOx/MVTN (toluene: 0.8%-4%; O2: 9.6%-24%). Dependences of toluene and O2 diffusion coefficients obtained through MSD fitting on the concentration of toluene (k) and O2 (l).
Fig. 5. In-situ DRIFTS characterizations to capture the reaction intermediates over MVTN (a) and TeOx/MVTN (b) (toluene: 1 μL·min?1, vaporized in the line; O2: 5 mL·min?1; N2: 20 mL·min?1; cat.: 0.02 g; 350 °C for MVTN and 400 °C for TeOx/MVTN; time: 0-35 min). (c) Adsorption energy of carbon dioxide on MVTN and TeOx/MVTN, the inset shows the adsorption model of carbon dioxide on MVTN and TeOx/MVTN. (d) Te 3d XPS of TeOx/MVTN after use in toluene/O2 and toluene/Ar, respectively, at 400 °C.
Entry | Substrate | Conv. (%) | Product | Selec. (%) | Yield (%) |
---|---|---|---|---|---|
1 | ![]() | 23.9 | ![]() | 95.1 | 22.7 |
2 | ![]() | 46.8 | ![]() | 64.7 | 30.3 |
3 | ![]() | 27.7 | ![]() | 89.4 | 24.8 |
4 | ![]() | 54.0 | ![]() | 79.5 | 42.9 |
5a | ![]() | — | — | — | — |
6a | ![]() | — | — | — | — |
7 | ![]() | 8.2 | ![]() | 98.2 | 8.1 |
8 | ![]() | 6.0 | ![]() | 80.7 | 4.8 |
9 | ![]() | 28.9 | ![]() | 99.1 | 28.6 |
10a | ![]() | — | — | — | — |
11 | ![]() | 95.8 | ![]() | 1.4 | 1.3 |
Table 1 Toluene homologues reactions on TeOx/MVTN.
Entry | Substrate | Conv. (%) | Product | Selec. (%) | Yield (%) |
---|---|---|---|---|---|
1 | ![]() | 23.9 | ![]() | 95.1 | 22.7 |
2 | ![]() | 46.8 | ![]() | 64.7 | 30.3 |
3 | ![]() | 27.7 | ![]() | 89.4 | 24.8 |
4 | ![]() | 54.0 | ![]() | 79.5 | 42.9 |
5a | ![]() | — | — | — | — |
6a | ![]() | — | — | — | — |
7 | ![]() | 8.2 | ![]() | 98.2 | 8.1 |
8 | ![]() | 6.0 | ![]() | 80.7 | 4.8 |
9 | ![]() | 28.9 | ![]() | 99.1 | 28.6 |
10a | ![]() | — | — | — | — |
11 | ![]() | 95.8 | ![]() | 1.4 | 1.3 |
Fig. 6. Proposed reaction mechanism for p-chlorotoluene oxidation to p-chlorobenzaldehyde over TeOx/MVTN at the V=O active site located at the pentameric ensembles (S4)2-S2-(S7)2. The inset shows the calculated energy profiles in eV. The atomic configurations (side view) of the reaction intermediates of p-chlorotoluene oxidation to p-chlorobenzaldehyde are shown in the reaction cycle.
|
[1] | Yang Li, Xiong Wang, Xing-Sheng Hu, Biao Hu, Sheng Tian, Bing-Hao Wang, Lang Chen, Guang-Hui Chen, Chao Peng, Sheng Shen, Shuang-Feng Yin. Pd loaded TiO2 as recyclable catalyst for benzophenone synthesis by coupling benzaldehyde with iodobenzene under UV light [J]. Chinese Journal of Catalysis, 2024, 59(4): 159-168. |
[2] | Huanhuan Yang, Shiying Li, Qun Xu. Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 32-65. |
[3] | Karen Cristina Bedin, Beatriz Mouriño, Ingrid Rodríguez-Gutiérrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, Flavio Leandro Souza. Solution chemistry back-contact FTO/hematite interface engineering for efficient photocatalytic water oxidation [J]. Chinese Journal of Catalysis, 2022, 43(5): 1247-1257. |
[4] | Muhammad Tayyab, Yujie Liu, Shixiong Min, Rana Muhammad Irfan, Qiaohong Zhu, Liang Zhou, Juying Lei, Jinlong Zhang. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires [J]. Chinese Journal of Catalysis, 2022, 43(4): 1165-1175. |
[5] | Changshun Deng, Yun Cui, Junchao Chen, Teng Chen, Xuefeng Guo, Weijie Ji, Luming Peng, Weiping Ding. Enzyme-like mechanism of selective toluene oxidation to benzaldehyde over organophosphoric acid-bonded nano-oxides [J]. Chinese Journal of Catalysis, 2021, 42(9): 1509-1518. |
[6] | Changshun Deng, Mengxia Xu, Zhen Dong, Lei Li, Jinyue Yang, Xuefeng Guo, Luming Peng, Nianhua Xue, Yan Zhu, Weiping Ding. Exclusively catalytic oxidation of toluene to benzaldehyde in an O/W emulsion stabilized by hexadecylphosphate acid terminated mixed-oxide nanoparticles [J]. Chinese Journal of Catalysis, 2020, 41(2): 341-349. |
[7] | Quanming Ren, Shengpeng Mo, Jie Fan, Zhentao Feng, Mingyuan Zhang, Peirong Chen, Jiajian Gao, Mingli Fu, Limin Chen, Junliang Wu, Daiqi Ye. Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface [J]. Chinese Journal of Catalysis, 2020, 41(12): 1873-1883. |
[8] | Hui Xu, Ji-Long Shi, Shaoshuai Lyu, Xianjun Lang. Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2 [J]. Chinese Journal of Catalysis, 2020, 41(10): 1468-1473. |
[9] | Mingpu Kou, Yu Deng, Rumeng Zhang, Li Wang, Po Keung Wong, Fengyun Su, Liqun Ye. Molecular oxygen activation enhancement by BiOBr0.5I0.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal [J]. Chinese Journal of Catalysis, 2020, 41(10): 1480-1487. |
[10] | Shengyao Wang, Zhongliang Xiong, Nan Yang, Xing Ding, Hao Chen. Iodine-doping-assisted tunable introduction of oxygen vacancies on bismuth tungstate photocatalysts for highly efficient molecular oxygen activation and pentachlorophenol mineralization [J]. Chinese Journal of Catalysis, 2020, 41(10): 1544-1553. |
[11] | Denghui Jiang, Yuegang Zhang, Xinheng Li. Synergistic effects of CuO and Au nanodomains on Cu2O cubes for improving photocatalytic activity and stability [J]. Chinese Journal of Catalysis, 2019, 40(1): 105-113. |
[12] | Feng Yan, Caixian Zhao, Lanhua Yi, Jingcai Zhang, Binghui Ge, Tao Zhang, Weizhen Li. Effect of the degree of dispersion of Pt over MgAl2O4 on the catalytic hydrogenation of benzaldehyde [J]. Chinese Journal of Catalysis, 2017, 38(9): 1613-1620. |
[13] | Yuan Qin, Zhenping Qu, Cui Dong, Na Huang. Effect of pretreatment conditions on catalytic activity of Ag/SBA-15 catalyst for toluene oxidation [J]. Chinese Journal of Catalysis, 2017, 38(9): 1603-1612. |
[14] | Kexian Chen, Haiying Xie. Selective aerobic oxidation promoted by highly efficient multi-nitroxy organocatalysts [J]. Chinese Journal of Catalysis, 2017, 38(4): 625-635. |
[15] | Bo Yuan, Bao Zhang, Zhiliang Wang, Shengmei Lu, Jun Li, Yan Liu, Can Li. Photocatalytic aerobic oxidation of toluene and its derivatives to aldehydes on Pd/Bi2WO6 [J]. Chinese Journal of Catalysis, 2017, 38(3): 440-446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||