Chinese Journal of Catalysis ›› 2025, Vol. 69: 149-162.DOI: 10.1016/S1872-2067(24)60222-6
• Articles • Previous Articles Next Articles
Mayra Alejandra Suareza, Laura Santamariaa, Gartzen Lopeza,b,*(), Enara Fernandeza, Martin Olazara, Maider Amutioa, Maite Artetxea
Received:
2024-07-10
Accepted:
2024-11-17
Online:
2025-02-18
Published:
2025-02-10
Contact:
电子信箱: Mayra Alejandra Suarez, Laura Santamaria, Gartzen Lopez, Enara Fernandez, Martin Olazar, Maider Amutio, Maite Artetxe. Oxidative steam reforming of HDPE pyrolysis volatiles on Ni catalysts: Effect of the support (Al2O3, ZrO2, SiO2) and promoter (CeO2, La2O3) on the catalyst performance[J]. Chinese Journal of Catalysis, 2025, 69: 149-162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60222-6
Support | Ni0 content (wt%) | SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | dM XRDa (nm) | Ni dispersionb (%) |
---|---|---|---|---|---|---|
Al2O3 | — | 87 | 0.38 | 173 | — | — |
SiO2 | — | 703 | 0.14 | 45 | — | — |
ZrO2 | — | 97 | 0.34 | 110 | — | — |
Supported catalyst | ||||||
Ni/Al2O3 (commercial) | 11.34 | 19 | 0.04 | 122 | 25 | 3.9 |
Ni/SiO2 | 9.55 | 429 | 0.12 | 53 | 11 | 8.8 |
Ni/ZrO2 | 9.51 | 34 | 0.31 | 322 | 25 | 3.9 |
Promoted catalyst | ||||||
Ni/CeO2-Al2O3 | 8.15 | 66 | 0.36 | 181 | 18 | 5.4 |
Ni/La2O3-Al2O3 | 8.10 | 52 | 0.39 | 214 | 20 | 4.9 |
Ni/CeO2-ZrO2 | 6.57 | 29 | 0.15 | 197 | 32 | 3.0 |
Table 1 The textural properties, Ni content and metal dispersion of the catalysts.
Support | Ni0 content (wt%) | SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | dM XRDa (nm) | Ni dispersionb (%) |
---|---|---|---|---|---|---|
Al2O3 | — | 87 | 0.38 | 173 | — | — |
SiO2 | — | 703 | 0.14 | 45 | — | — |
ZrO2 | — | 97 | 0.34 | 110 | — | — |
Supported catalyst | ||||||
Ni/Al2O3 (commercial) | 11.34 | 19 | 0.04 | 122 | 25 | 3.9 |
Ni/SiO2 | 9.55 | 429 | 0.12 | 53 | 11 | 8.8 |
Ni/ZrO2 | 9.51 | 34 | 0.31 | 322 | 25 | 3.9 |
Promoted catalyst | ||||||
Ni/CeO2-Al2O3 | 8.15 | 66 | 0.36 | 181 | 18 | 5.4 |
Ni/La2O3-Al2O3 | 8.10 | 52 | 0.39 | 214 | 20 | 4.9 |
Ni/CeO2-ZrO2 | 6.57 | 29 | 0.15 | 197 | 32 | 3.0 |
Fig. 2. XRD patterns of supported catalysts after the reduction step. Crystalline phases: () Ni0, () CaO(Al2O3)2, () CaAl2O4, () CaAl12O19, () Al2O3 and () Monoclinic ZrO2.
Fig. 3. XRD patterns of promoted catalysts after the reduction step. Crystalline phases: () Ni0, () Monoclinic ZrO2, () Tetragonal ZrO2, () Al2O3, () CeAlO3 and () CeO2.
Fig. 4. Performance of supported catalysts (conversion and H2 production) in the oxidative steam reforming of HDPE pyrolysis volatiles. Reaction conditions: 700 °C, space time 3.12 gcat min gHDPE-1.
Fig. 5. Individual product yields obtained in the oxidative steam reforming of HDPE pyrolysis volatiles on the supported catalysts. Reaction conditions: 700 °C, space time 3.12 gcat min gHDPE-1.
Supported catalyst | Textural properties (fresh/tested) | Coke deposition | |||||
---|---|---|---|---|---|---|---|
SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | Cc (wt%) | t (min) | rc (mgcoke gcat-1 gHDPE-1) | ||
Ni/Al2O3 (commercial) | 19/17 | 0.04/0.03 | 122/140 | 1.95 | 30 | 0.65 | |
Ni/SiO2 | 429/305 | 0.12/0.11 | 53/55 | 0.77 | 30 | 0.26 | |
Ni/ZrO2 | 34/28 | 0.31/0.2 | 322/257 | 1.92 | 30 | 0.64 |
Table 2 Textural prope rties, coke amount and deposition rate of used supported catalysts.
Supported catalyst | Textural properties (fresh/tested) | Coke deposition | |||||
---|---|---|---|---|---|---|---|
SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | Cc (wt%) | t (min) | rc (mgcoke gcat-1 gHDPE-1) | ||
Ni/Al2O3 (commercial) | 19/17 | 0.04/0.03 | 122/140 | 1.95 | 30 | 0.65 | |
Ni/SiO2 | 429/305 | 0.12/0.11 | 53/55 | 0.77 | 30 | 0.26 | |
Ni/ZrO2 | 34/28 | 0.31/0.2 | 322/257 | 1.92 | 30 | 0.64 |
Fig. 8. Effect of promoted catalysts on the conversion and H2 production in the oxidative steam reforming of HDPE pyrolysis volatiles. Reaction conditions: 700 °C, space time 3.12 gcat min gHDPE-1.
Fig. 9. Effect of promoted catalysts on the yields of the individual products obtained in the oxidative steam reforming of HDPE pyrolysis volatiles. Reaction conditions: 700 °C, space time 3.12 gcat min gHDPE-1.
Promoted catalyst | Textural properties (fresh/tested) | Coke deposition | |||||
---|---|---|---|---|---|---|---|
SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | Cc (wt%) | t (min) | rc (mgcoke gcat-1 gHDPE-1) | ||
Ni/CeO2-Al2O3 | 66/57 | 0.36/0.22 | 181/155 | 1.07 | 30 | 0.36 | |
Ni/La2O3-Al2O3 | 52/32 | 0.39/0.20 | 214/175 | 1.83 | 30 | 0.61 | |
Ni/CeO2-ZrO2 | 29/18 | 0.15/0.08 | 197/180 | 1.20 | 30 | 0.40 |
Table 3 Textural properties, coke amount and deposition rate of used promoted catalysts.
Promoted catalyst | Textural properties (fresh/tested) | Coke deposition | |||||
---|---|---|---|---|---|---|---|
SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | Cc (wt%) | t (min) | rc (mgcoke gcat-1 gHDPE-1) | ||
Ni/CeO2-Al2O3 | 66/57 | 0.36/0.22 | 181/155 | 1.07 | 30 | 0.36 | |
Ni/La2O3-Al2O3 | 52/32 | 0.39/0.20 | 214/175 | 1.83 | 30 | 0.61 | |
Ni/CeO2-ZrO2 | 29/18 | 0.15/0.08 | 197/180 | 1.20 | 30 | 0.40 |
|
[1] | Jian-Zhou Xiao, Zhi-Hao Zhao, Nan-Nan Zhang, Hong-Tu Che, Xiu Qiao, Guang-Ying Zhang, Xiaoyu Chu, Ya Wang, Hong Dong, Feng-Ming Zhang. Linkage engineering in covalent organic frameworks for overall photocatalytic H2O2 synthesis from water and air [J]. Chinese Journal of Catalysis, 2025, 69(2): 219-229. |
[2] | Jing Liu, Xiandi Ma, Jeonghan Roh, Dongwon Shin, Ara Cho, Jeong Woo Han, Jianping Long, Zhen Zhou, Menggai Jiao, Kug-Seung Lee, EunAe Cho. Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 69(2): 259-270. |
[3] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
[4] | Yiping Jiang, Zaw Ko Latt, Zhiqi Cong. Catalytic performances of engineered and artificial heme peroxygenases [J]. Chinese Journal of Catalysis, 2025, 69(2): 35-51. |
[5] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
[6] | Jiaxin Li, Yan Lv, Xueyan Wu, Xinyu Guo, Zhuojun Yang, Jixi Guo, Tianhua Zhou, Dianzeng Jia. Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production [J]. Chinese Journal of Catalysis, 2025, 69(2): 203-218. |
[7] | Xi-Lai Liu, Wei Zhong, Yu-Fan Jin, Tian-Jiao Wang, Xue Xiao, Pei Chen, Yu Chen, Xuan Ai. Pd-Pt bimetallene for the energy-saving electrochemical hydrogenation of 5-hydroxymethylfurfural [J]. Chinese Journal of Catalysis, 2025, 69(2): 241-248. |
[8] | Miao Zhang, Limin Zhang, Mingrui Wang, Guanghui Zhang, Chunshan Song, Xinwen Guo. The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 68(1): 366-375. |
[9] | Fei-Xiang Dong, Tian Jin, Xiaojuan Yu, Hong-Yue Wang, Qi Chen, Jian-He Xu, Gao-Wei Zheng. Artificial cascade biocatalysis for the synthesis of 2-aminocyclohexanols with contiguous stereocenters [J]. Chinese Journal of Catalysis, 2025, 68(1): 345-355. |
[10] | Xianglin Xiang, Bei Cheng, Bicheng Zhu, Chuanjia Jiang, Guijie Liang. High-entropy alloy nanocrystals boosting photocatalytic hydrogen evolution coupled with selective oxidation of cinnamyl alcohol [J]. Chinese Journal of Catalysis, 2025, 68(1): 326-335. |
[11] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[12] | Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives [J]. Chinese Journal of Catalysis, 2025, 68(1): 177-203. |
[13] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. Divulging the potential role of wide band gap semiconductors in electro and photo catalytic water splitting for green hydrogen production [J]. Chinese Journal of Catalysis, 2025, 68(1): 103-145. |
[14] | Zhiyuan Liu, Changan Wang, Ping Yang, Wei Wang, Hongyi Gao, Guoqing An, Siqi Liu, Juan Chen, Tingting Guo, Xinmeng Xu, Ge Wang. Microenvironment and electronic state modulation of Pd nanoparticles within MOFs for enhancing low-temperature activity towards DCPD hydrogenation [J]. Chinese Journal of Catalysis, 2024, 64(9): 112-122. |
[15] | Zheng Lin, Wanting Xie, Mengjing Zhu, Changchun Wang, Jia Guo. Boosting photocatalytic hydrogen evolution enabled by SiO2-supporting chiral covalent organic frameworks with parallel stacking sequence [J]. Chinese Journal of Catalysis, 2024, 64(9): 87-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||