Chinese Journal of Catalysis ›› 2025, Vol. 78: 144-155.DOI: 10.1016/S1872-2067(25)64767-X
• Articles • Previous Articles Next Articles
Xin-Ru Chena,1, Tian Jina,1, Chi Zhanga, Zhen-Yu Zhua, Xin-Yuan Shena, Qi Chena, Jing Wangb,*(
), Jian-He Xua, Gao-Wei Zhenga,*(
)
Received:2025-04-23
Accepted:2025-05-25
Online:2025-11-18
Published:2025-10-14
Contact:
*E-mail: wang.jing4@zs-hospital.sh.cn (J. Wang), gaoweizheng@ecust.edu.cn (G.-W. Zheng).
About author:1Contributed equally to this work.
Supported by:Xin-Ru Chen, Tian Jin, Chi Zhang, Zhen-Yu Zhu, Xin-Yuan Shen, Qi Chen, Jing Wang, Jian-He Xu, Gao-Wei Zheng. Engineering an imine reductase for enhanced activity and reduced substrate inhibition: Asymmetric synthesis of chiral 2-aryl pyrrolidines[J]. Chinese Journal of Catalysis, 2025, 78: 144-155.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64767-X
| Entry | Enzyme | Residue | Substrate loading (g L−1) | Conv. a (%) | ee b (%) | Specific activity c (U mg−1) | Fold improvement of activity | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 214 | 221 | 137 | 130 | 131 | 135 | 217 | 97 | 40 | 73 | 127 | 126 | |||||||
| 1 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 1 | 97.6 | >99 (S) | 1.6 | 1.0 |
| 2 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 10 | 15.4 | >99 (S) | 1.6 | 1.0 |
| 3 | SvIREDM1 | L | R | V | D | I | A | V | L | T | T | I | A | 10 | 70.6 | >99 (S) | 3.5 | 2.2 |
| 4 | SvIREDM1-1 | L | R | I | D | I | A | V | L | T | T | I | A | 20 | 46.9 | >99 (S) | 5.2 | 3.3 |
| 5 | SvIREDM1-2 | L | R | I | W | I | A | V | L | T | T | I | A | 20 | 91.8 | >99 (S) | 7.4 | 4.6 |
| 6 | SvIREDM1-3 | L | R | I | W | L | A | V | L | T | T | I | A | 30 | 49.3 | >99 (S) | 8.3 | 5.2 |
| 7 | SvIREDM1-4 | L | R | I | W | L | R | V | L | T | T | I | A | 30 | 85.3 | >99 (S) | 9.8 | 6.1 |
| 8 | SvIREDM1-5 | L | R | I | W | L | R | L | L | T | T | I | A | 30 | 99.5 | >99 (S) | 7.8 | 4.9 |
| 9 | SvIREDM2 | L | R | I | W | L | R | L | Y | T | T | I | A | 50 | 64.8 | >99 (S) | 8.0 | 5.0 |
| 10 | SvIREDM2-1 | L | R | I | W | L | R | L | Y | R | T | I | A | 50 | 68.6 | >99 (S) | 12.9 | 8.1 |
| 11 | SvIREDM2-2 | L | R | I | W | L | R | L | Y | R | S | I | A | 50 | 74.7 | >99 (S) | 16.4 | 10.3 |
| 12 | SvIREDM2-3 | L | R | I | W | L | R | L | Y | R | S | P | A | 50 | 99.6 | >99 (S) | 76.8 | 48.0 |
| 13 | SvIREDM3 | L | R | I | W | L | R | L | Y | R | S | P | G | 50 | 99.5 | >99 (S) | 136.8 | 85.5 |
Table 1 Performance of the best mutants from different rounds of evolution.
| Entry | Enzyme | Residue | Substrate loading (g L−1) | Conv. a (%) | ee b (%) | Specific activity c (U mg−1) | Fold improvement of activity | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 214 | 221 | 137 | 130 | 131 | 135 | 217 | 97 | 40 | 73 | 127 | 126 | |||||||
| 1 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 1 | 97.6 | >99 (S) | 1.6 | 1.0 |
| 2 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 10 | 15.4 | >99 (S) | 1.6 | 1.0 |
| 3 | SvIREDM1 | L | R | V | D | I | A | V | L | T | T | I | A | 10 | 70.6 | >99 (S) | 3.5 | 2.2 |
| 4 | SvIREDM1-1 | L | R | I | D | I | A | V | L | T | T | I | A | 20 | 46.9 | >99 (S) | 5.2 | 3.3 |
| 5 | SvIREDM1-2 | L | R | I | W | I | A | V | L | T | T | I | A | 20 | 91.8 | >99 (S) | 7.4 | 4.6 |
| 6 | SvIREDM1-3 | L | R | I | W | L | A | V | L | T | T | I | A | 30 | 49.3 | >99 (S) | 8.3 | 5.2 |
| 7 | SvIREDM1-4 | L | R | I | W | L | R | V | L | T | T | I | A | 30 | 85.3 | >99 (S) | 9.8 | 6.1 |
| 8 | SvIREDM1-5 | L | R | I | W | L | R | L | L | T | T | I | A | 30 | 99.5 | >99 (S) | 7.8 | 4.9 |
| 9 | SvIREDM2 | L | R | I | W | L | R | L | Y | T | T | I | A | 50 | 64.8 | >99 (S) | 8.0 | 5.0 |
| 10 | SvIREDM2-1 | L | R | I | W | L | R | L | Y | R | T | I | A | 50 | 68.6 | >99 (S) | 12.9 | 8.1 |
| 11 | SvIREDM2-2 | L | R | I | W | L | R | L | Y | R | S | I | A | 50 | 74.7 | >99 (S) | 16.4 | 10.3 |
| 12 | SvIREDM2-3 | L | R | I | W | L | R | L | Y | R | S | P | A | 50 | 99.6 | >99 (S) | 76.8 | 48.0 |
| 13 | SvIREDM3 | L | R | I | W | L | R | L | Y | R | S | P | G | 50 | 99.5 | >99 (S) | 136.8 | 85.5 |
| Entry | Enzyme | Ki (mmol L−1) | Km (mmol L−1) | kcat (s−1) | kcat/Km (s−1 mL mol−1) | Tm b (°C) |
|---|---|---|---|---|---|---|
| 1 | SvIREDWT | 2.14 ± 0.31 | 0.02 ± 0.00 | 1.04 ± 0.04 | 52.00 | 53.4 |
| 2 | SvIREDM1 | 1.25 ± 0.34 | 0.26 ± 0.06 | 3.97 ± 0.55 | 15.27 | 52.7 |
| 3 | SvIREDM2 | 8.89 ± 4.08 | 0.02 ± 0.00 | 4.10 ± 0.20 | 205.00 | 54.1 |
| 4 | SvIREDM3 | 7.22 ± 1.94 | 0.12 ± 0.01 | 98.33 ± 4.57 | 819.42 | 53.6 |
Table 2 Kinetic parameters and thermostability (Tm) of SvIRED and key mutants a.
| Entry | Enzyme | Ki (mmol L−1) | Km (mmol L−1) | kcat (s−1) | kcat/Km (s−1 mL mol−1) | Tm b (°C) |
|---|---|---|---|---|---|---|
| 1 | SvIREDWT | 2.14 ± 0.31 | 0.02 ± 0.00 | 1.04 ± 0.04 | 52.00 | 53.4 |
| 2 | SvIREDM1 | 1.25 ± 0.34 | 0.26 ± 0.06 | 3.97 ± 0.55 | 15.27 | 52.7 |
| 3 | SvIREDM2 | 8.89 ± 4.08 | 0.02 ± 0.00 | 4.10 ± 0.20 | 205.00 | 54.1 |
| 4 | SvIREDM3 | 7.22 ± 1.94 | 0.12 ± 0.01 | 98.33 ± 4.57 | 819.42 | 53.6 |
Fig. 2. Structural analysis of SvIREDWT and SvIREDM3. (A) Distribution of all mutated sites. (B) Interaction differences between mutated sites 40, 73, and NADPH in SvIREDWT (left) and SvIREDM3 (right). (C) Interaction differences between mutated sites 97 and Y140 in SvIREDWT (left) and SvIREDM3 (right). (D) Substrate binding mode analysis of 1a in SvIREDWT (left) and SvIREDM3 (right). Substrate 1a and NADPH are indicated using green and magenta sticks, respectively. Hydrogen bonds are indicated using broken lines. Mutated sites on A chain and B chain are coloured violet and yellow, respectively. The distance of hydride transfer is described as “d”. “d” is 5.7 ± 0.6 ? for SvIREDWT and 4.9 ± 0.6 ? for SvIREDM3 (average of three parallel simulations).
Fig. 3. Asymmetric reduction of 2-substituted pyrrolines catalysed by SvIREDWT and SvIREDM3. Reaction conditions were 100 mmol L-1 substrate, KPi buffer (100 mmol L-1, pH = 6.0), 1 mmol L-1 NADP+, 150 mmol L-1 glucose, 5% (v/v) DMSO, 1 mg mL?1 purified enzyme, 1.5 mg BmGDH lyophilised cell-free extract, 0.5 mL reaction volume in a 2 mL tube, 30 °C, and shaking at 1000 rpm for 24 h. Conversion was determined by GC-FID. n.a., not available; n.d., not detected. Specific activity was determined at 0.2 mmol L-1 2-substituted pyrrolines (2 mmol L-1 for 27a), 0.1 mmol L-1 NADPH, KPi buffer (100 mmol L-1, pH = 6.0) and 30 °C using purified enzyme. Absolute configurations were determined by circular dichroism (CD) spectroscopy. a Reactions were not conducted due to low and undetected activity.
Fig. 4. Reductive amination of aldehydes catalysed by SvIREDWT and SvIREDM3. Reaction conditions were 100 mmol L-1 1-4, 1 mol L-1 A-D (10 equiv.), KPi buffer (100 mmol L-1, pH = 7.0), 1 mmol L-1 NADP+, 150 mmol L-1 glucose, 5% (v/v) DMSO, 1 mg mL?1 purified enzyme, 1.5 mg BmGDH lyophilised cell-free extract, 0.5 mL reaction volume in a 2 mL tube, 30 °C, and shaking at 1000 rpm for 24 h. Conversion was determined by GC-FID. Specific activity was determined at 10?mmol L-1 1-4, 100 mmol L-1 A-D, 0.1?mmol L-1 NADPH, KPi buffer (100 mmol L-1, pH = 7.0) and 30 °C using purified enzyme.
| Entry | Substrate loading (g L−1) | Substrate addition | Feeding mode | Titration | Resin | Time (h) | Conv. (%) | ee (%) |
|---|---|---|---|---|---|---|---|---|
| 1 | 50 | batch | — | 2 mol L−1 HCl | — | 1 | 99.0 | >99 |
| 2 | 60 | batch | — | 2 mol L−1 HCl | — | 2 | 96.4 | >99 |
| 3[b] | 60 | batch | — | 2 mol L−1 HCl | — | 24 | 96.3 | >99 |
| 4 | 60 | fed-batch | 15/15/15/15 g L−1 in 2 h | 2 mol L−1 HCl | — | 3 | 99.1 | >99 |
| 5 | 80 | batch | — | 2 mol L−1 HCl | — | 2 | 45.7 | >99 |
| 6 | 80 | fed-batch | 20 g L−1 per 1.5 h | 2 mol L−1 HCl | — | 6 | 46.8 | >99 |
| 7 | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 6 | 75.4 | >99 |
| 8b | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 24 | 75.6 | >99 |
| 9 | 80 | batch | — | — | IRN150 | 6 | 94.1 | >99 |
| 10 | 80 | batch | — | — | HZ835 | 6 | 85.3 | >99 |
| 11 | 80 | batch | — | — | NKA-II | 6 | 95.2 | >99 |
| 12 | 80 | batch | — | — | D152 | 6 | 99.0 | >99 |
| 13 | 100 | batch | — | — | D152 | 6 | 98.7 | >99 |
Table 3 Process development for efficient synthesis of (S)-1b using SvIREDM3 a.
| Entry | Substrate loading (g L−1) | Substrate addition | Feeding mode | Titration | Resin | Time (h) | Conv. (%) | ee (%) |
|---|---|---|---|---|---|---|---|---|
| 1 | 50 | batch | — | 2 mol L−1 HCl | — | 1 | 99.0 | >99 |
| 2 | 60 | batch | — | 2 mol L−1 HCl | — | 2 | 96.4 | >99 |
| 3[b] | 60 | batch | — | 2 mol L−1 HCl | — | 24 | 96.3 | >99 |
| 4 | 60 | fed-batch | 15/15/15/15 g L−1 in 2 h | 2 mol L−1 HCl | — | 3 | 99.1 | >99 |
| 5 | 80 | batch | — | 2 mol L−1 HCl | — | 2 | 45.7 | >99 |
| 6 | 80 | fed-batch | 20 g L−1 per 1.5 h | 2 mol L−1 HCl | — | 6 | 46.8 | >99 |
| 7 | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 6 | 75.4 | >99 |
| 8b | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 24 | 75.6 | >99 |
| 9 | 80 | batch | — | — | IRN150 | 6 | 94.1 | >99 |
| 10 | 80 | batch | — | — | HZ835 | 6 | 85.3 | >99 |
| 11 | 80 | batch | — | — | NKA-II | 6 | 95.2 | >99 |
| 12 | 80 | batch | — | — | D152 | 6 | 99.0 | >99 |
| 13 | 100 | batch | — | — | D152 | 6 | 98.7 | >99 |
Scheme 2. Preparative-scale synthesis of 2-aryl-substituted pyrrolidines using SvIREDM3 and resin D152. Reaction mixture (5 mL) containing 20 g L?1 SvIREDM3 wet cells, 50 g L?1 substrate (80 g L?1 for 4a), 1.5 eq. glucose, 50 mg BmGDH lyophilised cell-free extract, 1 mmol L?1 NADP+, 5% DMSO (v/v), 0.15 g mL?1 resin (dry mass), and KPi buffer (100 mmol L?1, pH = 6.0) was shaken at 30 °C for 20 h.
|
| [1] | Jian-Peng Wang, Guang-Hui Lu, Qian Wu, Jian-Rong Dai, Ning Li. Toward scalable production of biobased N-substituted furfurylamines by engineered imine reductases [J]. Chinese Journal of Catalysis, 2025, 76(9): 210-220. |
| [2] | Zefei Xu, Jinhui Feng, Xiangtao Liu, Qian Li, Weidong Liu, Peiyuan Yao, Qiaqing Wu, Dunming Zhu. Asymmetric synthesis of chiral N-substituted amino amides and esters with two chiral centers by imine reductase-catalyzed dynamic kinetic resolution via reductive amination [J]. Chinese Journal of Catalysis, 2025, 77(10): 144-152. |
| [3] | NI Ye, ZHANG Bei-Hua, SUN Zhi-Hao. Efficient Synthesis of (R)-2-Chloro-1-(3-chlorophenyl)ethanol by Permeabilized Whole-Cells of Candida ontarioensis [J]. Chinese Journal of Catalysis, 2012, 33(4): 681-687. |
| [4] | SU Yu-Ning, NI Ye, WANG Jun-Chao, XU Zhi-Hao, SUN Zhi-Hao. Two-Enzyme Coexpressed Recombinant Strain for Asymmetric Synthesis of Ethyl (R)-2-Hydroxy-4-phenylbutyrate [J]. Chinese Journal of Catalysis, 2012, 33(10): 1650-1660. |
| [5] | WANG Dan, ZHANG Qiang, LI Wang, QI 南Chang, GUO Chun-Xiao, YANG Zhi-Rong, ZHANG Jie. Asymmetric Reduction of Ethyl Pyruvate Catalyzed by Yeast Resting Cells to (S)-Ethyl Lactate [J]. Chinese Journal of Catalysis, 2011, 32(6): 1035-1039. |
| [6] | LOU Wenyong;GUO Qiang;YU Huilei;ZONG Minhua;*. Asymmetric Reduction of Acetyltrimethylsilane Catalyzed by Candida parapsi-losis CCTCC M203011 Cells [J]. Chinese Journal of Catalysis, 2009, 30(12): 1276-1280. |
| [7] | NI Hongliang;YAO Shanjing*. Asymmetric Reduction of β-Carbonyl Ester with Respiratory-Deficient Mutants of Baker’s Yeast [J]. Chinese Journal of Catalysis, 2008, 29(6): 537-541. |
| [8] | WANG Mengliang*;HU Rui;GUO Xuelin;YAN Fukun;LIU Diansheng. Mechanism of Light-Controlled Asymmetric Reduction of Acetophenone by Photosynthetic Bacteria [J]. Chinese Journal of Catalysis, 2008, 29(3): 233-237. |
| [9] | YING Xiaojiao, YAO Shanjing*, GUAN Yixin. Asymmetric Reduction of Acetophenone to α-Phenylethanol by Candida valida under Compressed CO2 [J]. Chinese Journal of Catalysis, 2006, 27(7): 631-635. |
| [10] | MA Xiaokui1*, WANG Zhezhi1, CHEN Wuling2. Asymmetric Reduction of Ethyl 4-Chloro-3-Oxobutanoate to Ethyl 4-Chloro-3-Hydroxybutanoate Directly Catalyzed by Yeast Fermentation Broth [J]. Chinese Journal of Catalysis, 2006, 27(4): 314-318. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||