• Article • Previous Articles Next Articles
Yiwei Liua, Xiaoxia Changa, Bingjun Xua,b,*
Received:
2025-04-16
Accepted:
2025-07-04
Contact:
*E-mail: b_xu@pku.edu.cn (B. Xu).
Supported by:
Yiwei Liu, Xiaoxia Chang, Bingjun Xu. An atom-efficient electrosynthesis strategy for organic halides[J]. Chinese Journal of Catalysis, DOI: 10.1016/S1872-2067(25)64796-6.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64796-6
[1] B. R. Smith, C. M. Eastman, J. T. Njardarson, J. Med. Chem., 2014, 57, 9764-9773. [2] Y. Song, J. Integr.Plant Biol., 2014, 56, 106-113. [3] S. A. Begum, A. V. Rane, K. Kanny, Compatibilization of Polymer Blends. Amsterdam: Elsevier, 2020, 563-593. [4] V. Agarwal, J. M. Blanton, S. Podell, A. Taton, M. A. Schorn, J. Busch, Z. Lin, E. W. Schmidt, P. R. Jensen, V. J. Paul, J. S. Biggs, J. W. Golden, E. E. Allen, B. S. Moore,Nat. Chem. Biol., 2017, 13, 537-543. [5] J. R. Catch, D. F. Elliott, D. H. Hey, E. R. H.Jones, J. Chem. Soc., 1948, 272-275. [6] R. R. Gallucci, R. Going, J. Org. Chem., 1981, 46, 2532-2538. [7] L. J. Andrews, R. M. Keefer, J. Am. Chem.Soc., 1957, 79, 5169-5174. [8] M. R. Scheide, C. R. Nicoleti, G. M. Martins, A. L. Braga,Org. Biomol. Chem., 2021, 19, 2578-2602. [9] Y. Yuan, A. Yao, Y. Zheng, M. Gao, Z. Zhou, J. Qiao, J. Hu, B. Ye, J. Zhao, H. Wen, A. Lei, iScience, 2019, 12, 293-303. [10] Y. Liang, F. Lin, Y. Adeli, R. Jin, N. Jiao,Angew. Chem. Int. Ed., 2019, 58, 4566-4570. [11] S. C. Virgil, T. V. Hughes, D. Qiu and J. Wang, N-Chlorosuccinimide, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., online, 2012. [12] S. C. Virgil, P. R. Jenkins, A. J.Wilson and M. D. García Romero, N-Bromosuccinimide, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., online, 2006. [13] H. de Koning and W. N. Speckamp, Succinimide, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., online, 2001. [14] M. J.O'Neil, The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Royal Society of Chemistry, 2013. [15] C. Fumagalli, in: Kirk‐Othmer Encyclopedia of Chemical Technology, 2006. [16] W. Luc, J. Rosen, F. Jiao, Catal. Today, 2017, 288, 79-84. [17] R. Bulánek, B. Wichterlová, Z. Sobalík, J. Tichý, Appl. Catal. B, 2001, 31, 13-25. [18] H. Over,Chem. Rev., 2012, 112, 3356-3426. [19] J. G. Vos, M. T. M.Koper, J. Electroanal. Chem., 2018, 819, 260-268. [20] V. Consonni, S. Trasatti, F. Pollak, W. E.O’Grady, J. Electroanal. Chem. Interfacial Electrochem., 1987, 228, 393-406. [21] S. Trasatti, Electrochim. Acta, 2000, 45, 2377-2385. [22] H. Elamen, Y. Badali, M. Ulusoy, Y. Azizian-Kalandaragh, Ş. Altındal, M. T. Güneşer,Polym. Bull., 2024, 81, 403-422. [23] W. Xu, G. M. Haarberg, S. Sunde, F. Seland, A. P. Ratvik, E. Zimmerman, T. Shimamune, J. Gustavsson, T. Åkre, J. Electrochem. Soc., 2017, 164, F895-F900. [24] L.-Å. Näslund, Á. S. Ingason, S. Holmin, J. Rosen, J. Phys. Chem. C, 2014, 118, 15315-15323. [25] V. Pfeifer, T. E. Jones, J. J.Velasco Vélez, C. Massué, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, Surf. Interface Anal., 2016, 48, 261-273. [26] M. C. Biesinger, L. W. M.Lau, A. R. Gerson, R. St. C. Smart, Appl. Surf. Sci., 2010, 257, 887-898. [27] S. Hao, M. Liu, J. Pan, X. Liu, X. Tan, N. Xu, Y. He, L. Lei, X. Zhang,Nat. Commun., 2020, 11, 5368. [28] Y.-S. Lin, K.-Y. Lee, K.-Y. Chen, Y.-S. Huang, Appl. Surf. Sci., 2009, 256, 1042-1045. [29] C.-Y. Lee, A. M. Bond, Langmuir, 2010, 26, 16155-16162. [30] V. I. Eberil, N. S. Fedotova, E. A. Novikov, A. F. Mazanko, Russ. J. Electrochem., 2000, 36, 1296-1302. [31] Y. Takasu, T. Arikawa, S. Sunohara, K. Yahikozawa, J. Electroanal. Chem., 1993, 361, 279-281. [32] M. Stolov, V. Freger,Environ. Sci. Technol., 2019, 53, 2618-2625. [33] J. G. Vos, A. Venugopal, W. A. Smith, M. T. M.Koper, J. Catal., 2020, 389, 99-110. [34] L. R. Czarnetzki, L. J. J.Janssen, J. Appl. Electrochem., 1992, 22, 315-324. [35] Y. Ikeda, T. Tang, G. Gordon,Anal. Chem., 1984, 56, 71-73. [36] X. Tang, I. Arif, P. Diao, J. Electroanal. Chem., 2023, 942, 117569. [37] P. Cettou, P. M. Robertson, N. Ibl, Electrochim. Acta, 1984, 29, 875-885. [38] T. Asakai, A. Hioki, Anal. Methods, 2013, 5, 6240. [39] H. Andries, M. De Rop, T. Breugelmans, J. Hereijgers, J. Appl. Electrochem., 2024, 54, 2791-2808. [40] A. E. Deberghes, M. J. Kazour, J. M. Notestein, L. C. Seitz,ACS Catal., 2024, 14, 12128-12139. [41] A. Hussain, T. Higuchi, A. Hurwitz, I. H. Pitman, J. Pharm. Sci., 1972, 61, 371-374. [42] Q. Li, M. Haque, V. Kuzmenko, N. Ramani, P. Lundgren, A. D. Smith, P. Enoksson, J. Power Sources, 2017, 348, 219-228. [43] S. Ferro, C. Orsan, A. De Battisti, J. Appl. Electrochem., 2005, 35, 273-278. [44] L. J. J.Janssen, J. G. Hoogland, Electrochim. Acta, 1970, 15, 1677-1683. [45] B. E. Conway, Y. Phillips, S. Y. Qian, J. Chem. Soc.,Faraday Trans., 1995, 91, 283-293. [46] N. Rajendraprasad, K. Basavaiah, K. B. Vinay, Int. J. Anal. Chem., 2011, 2011, 138628. [47] N. Ren, C. Qu, A. Zhang, C. Yu, X. Li, S. Meng, J. Fang, D. Liang,Environ. Sci. Technol., 2024, 58, 22829-22839. [48] J. G. Bell, J. Wang, J. Electroanal. Chem., 2015, 754, 133-137. [49] M. Sulur, P. Sharma, R. Ramakrishnan, R. Naidu, E. Merifield, D. M. Gill, A. M. Clarke, C. Thomson, M. Butters, S. Bachu, C. H. Benison, N. Dokka, E. R. Fong, D. R. J.Hose, G. P. Howell, S. E. Mobberley, S. C. Morton, A. K. Mullen, J. Rapai, B. Tejas, Org. Process Res. Dev., 2012, 16, 1746-1753. [50] B. Li, C. K. F.Chiu, R. F. Hank, J. Murry, J. Roth, H. Tobiassen, Org. Process Res. Dev., 2002, 6, 682-683. [51] N. D. Kimpe, Bromoacetone, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., online, 2001. [52] C. Liu, C. Shi, F. Mao, Y. Xu, J. Liu, B. Wei, J. Zhu, M. Xiang, J. Li, Molecules, 2014, 19, 15653-15672. [53] Y. Hayakawa, R. Noyori, A. K. Kanduluru, M. Srinivasarao, 1,3-Dibromoacetone, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., online, 2017, 1-8. |
[1] | Yinglong Weng, Jianping Zhang, Kun Zhang, Yitong Lu, Tingting Huang, Yingbo Kang, Xiaotong Han, Jieshan Qiu. Recent progress in functional carbon-based materials for advanced electrocatalysis [J]. Chinese Journal of Catalysis, 2025, 76(9): 10-36. |
[2] | Yan Sun, Lei Zhang. Sustainable photo-assisted electrocatalysis of struvite fertilizer via synchronous redox catalysis on bifunctional yolk-shell Cu2O@NiFe2O4 Z-scheme nanoreactor [J]. Chinese Journal of Catalysis, 2025, 76(9): 230-241. |
[3] | Hong-Rui Zhu, Xi-Lun Wang, Juan-Juan Zhao, Meng-Han Yin, Hui-Min Xu, Gao-Ren Li. Efficient photoelectrochemical cell composed of Ni single atoms/P, N-doped amorphous NiFe2O4 as anode catalyst and Ag NPs@CuO/Cu2O nanocubes as cathode catalyst for microplastic oxidation and CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 76(9): 159-172. |
[4] | Dan Yang, Xiang Cui, Zhou Xu, Qian Yan, Yating Wu, Chunmei Zhou, Yihu Dai, Xiaoyue Wan, Yuguang Jin, Leonid M. Kustov, Yanhui Yang. Efficient electrocatalytic oxidation of glycerol toward formic acid over well-defined nickel nanoclusters capped by ligands [J]. Chinese Journal of Catalysis, 2025, 76(9): 185-197. |
[5] | Li Yuanrui, Zhang Xiaolei, Li Tong, Hu Cheng, Chen Fang, Cai Hao, Huang Hongwei. Few-layer oxygen vacant Bi2O2(OH)NO3 for dual-channel piezocatalytic H2O2 production from H2O and air [J]. Chinese Journal of Catalysis, 2025, 75(8): 105-114. |
[6] | Zhang Bingjie, Wang Chunyan, Yang Fulin, Wang Shuli, Feng Ligang. Work function-induced spontaneous built-in electric field in Ir/MoSe2 for efficient PEM water electrolysis [J]. Chinese Journal of Catalysis, 2025, 75(8): 95-104. |
[7] | Jianing Pan, Min Li, Yingqi Wang, Wenfu Xie, Tianyu Zhang, Qiang Wang. Advanced photoelectrocatalytic coupling reactions [J]. Chinese Journal of Catalysis, 2025, 73(6): 99-145. |
[8] | Jie Chen, Jing Li, Zidong Wei. Recent advances in the preparation of glycolic acid by selective electrocatalytic oxidation of ethylene glycol [J]. Chinese Journal of Catalysis, 2025, 73(6): 79-98. |
[9] | Chenghong Hu, Yue Zhang, Yi Zhang, Qintong Huang, Kui Shen, Liyu Chen, Yingwei Li. Single-atomic Fe sites modulated by Sn regulator for enhanced electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 72(5): 222-229. |
[10] | Qisen Jia, Yanan Wang, Yan Zhao, Zhenming Tian, Luyao Ren, Xuejing Cui, Guangbo Liu, Xin Chen, Wenzhen Li, Luhua Jiang. Driving selective photoelectrocatalytic oxidation of seawater to oxygen via regulating interfacial water structures on titanium oxides [J]. Chinese Journal of Catalysis, 2025, 72(5): 154-163. |
[11] | Jinghan Sun, Zhengrong Xu, Deng Liu, Aiguo Kong, Qichun Zhang, Rui Liu. In-situ distortion of Bi lattice in Bi28O32(SO4)10 cluster boosted electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2025, 72(5): 199-210. |
[12] | Siming Li, Enyang Sun, Pengfei Wei, Wei Zhao, Suizhu Pei, Ying Chen, Jie Yang, Huili Chen, Xi Yin, Min Wang, Yawei Li. Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells [J]. Chinese Journal of Catalysis, 2025, 72(5): 277-288. |
[13] | Yu Huang, Lei Zou, Yuan-Biao Huang, Rong Cao. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of methane to alcohol [J]. Chinese Journal of Catalysis, 2025, 70(3): 207-229. |
[14] | Xue-Feng Cheng, Qing Liu, Qi-Meng Sun, Huilong Dong, Dong-Yun Chen, Ying Zheng, Qing-Feng Xu, Jian-Mei Lu. Proximity electronic effect of adjacent Ni Site enhances compatibility of hydrogenation and deoxygenation over Cu Site to boost nitrate electroreduction to ammonia [J]. Chinese Journal of Catalysis, 2025, 70(3): 285-298. |
[15] | Donglin Zhao, Keyu Zhou, Li Zhan, Guangyin Fan, Yan Long, Shuyan Song. Modulation of the electronic structure of CoP active sites by Er-doping for nitrite reduction for ammonia electrosynthesis [J]. Chinese Journal of Catalysis, 2025, 70(3): 299-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||