催化学报 ›› 2020, Vol. 41 ›› Issue (8): 1174-1185.DOI: 10.1016/S1872-2067(20)63539-2

• 论文 • 上一篇    下一篇

亲水性介孔碳负载Ru纳米粒子催化海藻油低温水相加氢脱氧制烷烃

林凯a, 赵晨a,b   

  1. a 华东师范大学化学与分子工程学院, 上海市绿色化学与化工过程绿色化重点实验室, 上海 200062;
    b 华东师范大学崇明生态研究院, 上海 200062
  • 收稿日期:2019-11-28 修回日期:2019-12-23 出版日期:2020-08-18 发布日期:2020-08-08
  • 通讯作者: 赵晨
  • 基金资助:
    国家重点研发计划(2016YFB0701100);国家自然科学基金(21573075);华东师范大学崇明生态研究院(ECNU-IEC-201902).

Ru nanoparticles supported on hydrophilic mesoporous carbon catalyzed low-temperature hydrodeoxygenation of microalgae oil to alkanes at aqueous-phase

Arif Alia, Chen Zhaoa,b   

  1. a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China;
    b Institute of Eco-Chongming, East China Normal University, Shanghai 200062, China
  • Received:2019-11-28 Revised:2019-12-23 Online:2020-08-18 Published:2020-08-08
  • Supported by:
    This work was supported by the National Key R&D Program of China (2016YFB0701100), the National Natural Science Foundation of China (21573075) and Institute of Eco-Chongming (ECNU-IEC-201902).

摘要: 将微藻油等能源载体加工成有价值的燃料和化学品具有广阔的应用前景.由于从藻类细胞中分离固有水非常困难,因此以水相为溶剂适合含水微藻油的转化.而制备耐水且水热稳定的催化剂非常重要,因为许多载体容易被蒸汽破坏.其中,碳材料相当稳定,具有高的比表面积.然而,它们具有高度的憎水性,亲水性较差,因此很难与水中的反应物接触.
本文中,我们合成了以高度亲水性介孔碳为载体的钌/碳催化剂,用于催化微藻油在低温(140℃)下一锅法于水相中定量加氢脱氧成烷烃.首先以淀粉和氯化锌为原料,在氮气中一步煅烧制备了介孔炭.其中,淀粉用作碳源,氯化锌则作为活化的路易斯酸和脱水剂.所得碳具有高的比表面积和孔体积,使得Ru纳米粒子具有较高的分散性.XPS表征表明,Ru/AC在286.5eV处有一个与杂原子结合的sp2碳峰,表明催化剂上存在C-OH基团.值得注意的是,Ru/C-ZnCl2催化剂在286.5eV时的峰值比Ru/AC催化剂的峰值更强,显示Ru/C-ZnCl2表面有更多的C-OH键.FTIR光谱研究表明,两种催化剂分别在3400和1530cm-1处出现对应于O-H拉伸和C=C键的振动峰.有趣的是,Ru/C-ZnCl2催化剂在1092cm-1处显示出强且宽的峰证实了羟基的存在.但在Ru/AC催化剂中没有观察到该峰.催化剂的热重分析显示,在低于100℃、120-579℃和580℃的温度下分别出现三个峰,分别对应于脱水(表面水分)、去除含氧基团和载体分解.Ru/C-ZnCl2催化剂的失重率(13%)是Ru/AC(3%)的4倍,与FTIR测试结果一致,表明Ru/C-ZnCl2催化剂上的羟基含量较高.XPS、IR和TGA结果表明,碳材料表面富含羟基.另一方面,对Ru/C-ZnCl2和Ru/AC催化剂进行了与水的接触角实验,通过比较Ru/C-ZnCl2和Ru/AC与水的不同作用角,进一步证实了Ru/C-ZnCl2比Ru/AC具有更好的亲水性.我们认为,碳材料相对于有机相优选地与水相接触,提高了基底的可接近性.同样,亲水性碳材料由于其水相容性而更适合于水相反应.
催化剂对硬脂酸的反应结果显示,Ru/AC催化剂转化率为100%,硬脂醇收率52%,正庚烷收率43%,酯收率3%.而Ru/C-ZnCl2催化剂的硬脂酸转化率为100%,正庚烷产率为88%,正十八烷产率为12%.原位FTIR研究了模型化合物丁酸在两种钌/碳催化剂上的吸附和加氢脱氧作用.实验结果表明,丁酸在Ru/C-ZnCl2催化剂上显现了1720m-1处丁酸的羰基振动峰,这是由于其多孔性和对丁酸的吸附.相比之下,Ru/AC催化剂在1720cm-1处未见出峰显示对丁酸的弱吸附.总之,在硬脂酸的串联加氢和脱羰反应中,亲水性介孔和亲水性Ru/C-ZnCl2催化剂的动力学模拟和在水中的原位红外监测均显示出比商用Ru/AC催化剂优越的性能.本文设计的水热碳材料是一种高活性、环境友好、可持续、可循环利用的材料,在水热条件下的加氢反应中表现出很好的应用潜力.

 

关键词: 海藻油, 硬脂酸, 十七烷, 亲水性碳材料, 加氢脱氧, Ru/C催化剂

Abstract: The processing of an energy carrier such as microalgae oil into valuable fuels and chemicals is quite promising. Aqueous-phase processing is suitable for this purpose because the separation of intrinsic water from the algae cell is difficult. In this study, we synthesized ruthenium (Ru) nanoparticles supported on highly hydrophilic mesoporous carbon to catalyze the quantitative hydrodeoxygenation (HDO) of microalgae oil to alkanes in a one-pot process at a low temperature (140℃) in the aqueous phase. The mesoporous carbon was obtained by single-step calcination of starch and zinc chloride in nitrogen. The as-obtained carbon showed high surface areas and pore volumes, allowing high dispersion of Ru nanoparticles. The surface of the carbon material was rich in hydroxyl groups, as evidenced by X-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, and thermogravimetric analysis (TGA) measurements. As a result, the carbon material contacted preferably with the water phase versus the organic phase, improving the accessibility of substrates. On the other hand, the contact angle test results speculated the superior hydrophilic nature of mesoporous Ru/C (ZnCl2, starch) than commercial Ru/C. Both kinetics modeling and in situ IR monitoring in water revealed the superior performance of the hydrophilic mesoporous and hydrophilic Ru/C compared to a commercial Ru/C for the tandem hydrogenation of stearic acid and decarbonylation of stearyl alcohol. The herein designed hydrothermal carbon material was highly active, environmentally benign, sustainable, and recyclable material, and could be potentially used for other hydrogenation reactions in the aqueous phase.

Key words: Algae oil, Stearic acid, Heptadecane, Hydrophillic carbon, Hydrodeoxygenation, Ru/C catalyst