催化学报 ›› 2021, Vol. 42 ›› Issue (5): 817-823.DOI: 10.1016/S1872-2067(20)63692-0

• 论文 • 上一篇    下一篇

纳米Pd和Au催化CO2还原粒径效应的密度泛函理论计算研究

杨漂萍a,b, 李璐璐a,b, 赵志坚a,b,*(), 巩金龙a,b,c   

  1. a天津大学化工学院, 绿色化工教育部重点实验室, 天津300072
    b天津化学化工创新协同中心, 天津300072
    c新加坡国立大学-天津大学联合学院, 天津大学国际校区, 福建福州350207
  • 收稿日期:2020-05-08 接受日期:2020-05-08 出版日期:2021-05-18 发布日期:2021-01-29
  • 通讯作者: 赵志坚
  • 基金资助:
    国家自然科学基金(21506149);国家自然科学基金(21761132023);国家自然科学基金(21676181);高等学校学科创新引智计划(B06006)

Reveal the nature of particle size effect for CO2 reduction over Pd and Au

Piaoping Yanga,b, Lulu Lia,b, Zhi-Jian Zhaoa,b,*(), Jinlong Gonga,b,c   

  1. aKey Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
    cJoint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
  • Received:2020-05-08 Accepted:2020-05-08 Online:2021-05-18 Published:2021-01-29
  • Contact: Zhi-Jian Zhao
  • About author:* E-mail: zjzhao@tju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21506149);National Natural Science Foundation of China(21761132023);National Natural Science Foundation of China(21676181);Program of Introducing Talents of Discipline to Universities(B06006)

摘要:

以可再生能源为能量来源, 在水溶液中进行的光(电)催化CO2还原生成高附加值化学品和燃料是解决能源危机与环境污染的有效途径之一. CO是一种简单却很重要的CO2还原产物, 它可以作为水煤气变换反应与费托合成的重要原料. 具有较高CO选择性的贵金属纳米颗粒催化剂(如Au和Pd)一直受到研究者的广泛关注. 一般来说, 金属颗粒催化剂的催化性能与粒径大小密切相关, 即所谓的粒径效应. 然而在实际的理论计算研究中, 由于受到计算能力的限制, 催化剂模型都仅局限于简单的周期性模型或小的金属团簇模型, 无法准确描述真实颗粒上复杂的反应位点的性质, 导致了对催化行为的误解. 因此, 建立更加真实的颗粒模型对探究纳米颗粒催化剂上活性位点的性质, 解释其粒径效应至关重要. 本文旨在阐述Au与Pd纳米颗粒催化剂不同活性位点上CO2还原反应与产H2副反应的竞争机制, 并解释Au与Pd纳米颗粒催化剂在CO2电还原中表现出不同粒径效应的原因. 本文基于密度泛函理论, 采用VASP软件, BEEF-vdW泛函进行计算. 分别建立了原子数为55, 147, 309和561的颗粒模型和高CO*覆盖度模型, 避免了传统周期性模型的局限性, 探究了金属颗粒催化剂不同反应位点上的CO选择性. 结果表明, 对于颗粒模型来说, (100)位点对CO的选择性优于边缘位点; 但对于周期性模型来说, Au(211)对CO的选择性则优于Au(100). 产生这种反差的主要原因在于Au颗粒的边缘位点对H*的吸附过强. 通过对比, 我们直观地展现了颗粒模型上平面位点和Edge位点与相对应的周期性模型上CO选择性的区别, 突出了模型选择对揭示活性位点性质的重要性. 在此基础上, 通过计算理论CO法拉第效率, 发现Au颗粒随着粒径的减小, CO选择性降低, 与实验的趋势一致. 对于Pd催化剂来说, 低覆盖度模型无法正确预测活性位点的性质; 而高CO覆盖度的情况下, Pd颗粒的边缘位点对COOH*吸附能更强, 这是导致边缘位点上CO选择性更高的主要原因. 同样通过计算理论CO法拉第效率, 发现随着粒径的减小, Pd颗粒上CO选择性升高. 本文不仅成功揭示了Au与Pd颗粒催化剂上活性位点的性质, 对粒径效应做出了合理解释, 也强调了合理的计算模型是理论研究的基础.

关键词: 密度泛函理论, CO2还原, 覆盖度效应, 催化剂模型, 纳米颗粒

Abstract:

Small cluster and periodic surface models with low coverages of intermediates are frequently employed to investigate reaction mechanisms and identify active sites on nanoparticles (NPs) in density functional theory (DFT) studies. However, diverse active sites on NPs cannot be sufficiently represented by these simple models, hampering the in-depth insights into the catalytic behavior of NPs. This paper describes the crucial roles of both model and coverage effect on understanding the nature of active sites for CO2 reduction over Au and Pd NPs using DFT calculations. Terrace sites exhibit higher selectivity for CO than edge sites on Au NPs, which is opposite to the results on Au periodic surfaces. This contradiction reveals the computational model effect on clarifying active site properties. For Pd catalysts, the coverage effect is more significant. On bare Pd NPs and periodic surfaces, the selectivity for CO at edge sites is nearly identical to that at terrace sites, whereas edge sites display higher selectivity for CO than terrace sites in the case of high CO coverages. Through considering the more realistic models and the coverage effect, we successfully describe the size effect of Au and Pd NPs on CO selectivity. More importantly, this work reminds us of the necessity of reasonable models in DFT calculations.

Key words: Density functional theory, CO2 reduction, Coverage effects, Catalyst model, Nanoparticles