催化学报 ›› 2021, Vol. 42 ›› Issue (5): 762-771.DOI: 10.1016/S1872-2067(20)63700-7

• 论文 • 上一篇    下一篇

高效的CdS/Ti-Fe2O3异质结光阳极: 研究Z型电荷迁移机制增强光电化学水氧化活性

李银银a, 武倩楠a, 步琦璟a, 张凯a, 林艳红a, 王德军a, 邹晓新b, 谢腾峰a,*()   

  1. a吉林大学化学学院, 吉林长春130012
    b吉林大学化学学院, 无机合成与制备化学国家重点实验室, 吉林长春130012
  • 收稿日期:2020-05-24 接受日期:2020-05-24 出版日期:2021-05-18 发布日期:2021-01-29
  • 通讯作者: 谢腾峰
  • 基金资助:
    国家自然科学基金(51572106);国家自然科学基金(21773086);国家自然科学基金(21872063)

An effective CdS/Ti-Fe2O3 heterojunction photoanode: Analyzing Z-scheme charge-transfer mechanism for enhanced photoelectrochemical water-oxidation activity

Yinyin Lia, Qiannan Wua, Qijing Bua, Kai Zhanga, Yanhong Lina, Dejun Wanga, Xiaoxin Zoub, Tengfeng Xiea,*()   

  1. aCollege of Chemistry, Jilin University, Changchun 130012, Jilin, China
    bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
  • Received:2020-05-24 Accepted:2020-05-24 Online:2021-05-18 Published:2021-01-29
  • Contact: Tengfeng Xie
  • About author:* E-mail: xietf@jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51572106);National Natural Science Foundation of China(21773086);National Natural Science Foundation of China(21872063)

摘要:

近年来以Z型机制为转移的光催化体系成微光电化学分解水领域的研究热点. 相比较传统的异质结, Z型异质结能够保留具有高氧化能力与高还原能力的位点, 从而提高光电化学效率. 其中, 证明电荷的Z型迁移机制成为研究人员努力的方向, 比较有效的证明方法包括自由基捕获、XPS分析和检测还原位点等. 对于Z型异质结, 界面电场处电荷的迁移行为是至关重要的, 但目前常用的证明手段对界面电场处电荷的迁移行为研究还比较少. 因此, 本文精心设计了CdS/Ti-Fe2O3异质结光阳极来探索光电化学分解水中的电荷转移行为. 采用开尔文探针测试、表面光电压谱测试和瞬态光电压谱测试等光物理测试手段监测CdS/Ti-Fe2O3 Z型异质结光阳极界面电场中光生电荷的迁移行为. 其中, 开尔文探针和表面光电压测量表明, CdS/Ti-Fe2O3界面驱动力有利于激发电子快速迁移至CdS; 由于Z型异质结是一个双光子的过程, 因此在瞬态光电压的过程中采取了双光束策略, 即用不同波长的光分别从两个半导体侧进行照光, 以充分发挥内层CdS的电子传输层的作用. 结果表明, 在双光束照射下界面电场增强, 使得更多Ti-Fe2O3电子与CdS空穴结合, 使得更多Ti-Fe2O3电子与CdS空穴结合, 更多的空穴迁移到Ti-Fe2O3的表面去参与反应, 充分证明了CdS/Ti-Fe2O3光阳极的Z型迁移机制. 基于界面电场有效的电荷迁移与分离的分析, 对Z型异质结光阳极进行了光电化学的测试, 与单纯Ti-Fe2O3光阳极相比, CdS/Ti-Fe2O3光阳极表现出优异的光电化学性能. 其中, 25CdS/Ti-Fe2O3光阳极的光电流密度在1.23V (相对于标准氢电极)达到1.94 mA/cm2, 比单纯Ti-Fe2O3光电流高出两倍. 阻抗测试结果表明, CdS/Ti-Fe2O3光阳极能够减小电荷传输阻力, 从而加快电荷分离效率, 这也间接证明了Z型光阳极的成功构筑, 因此, 本文提供了一个有效且新颖的手段来证明光电化学分解水中光催化系统的Z型电荷转移机制.

关键词: CdS/Ti-Fe2O3, Z型, 电荷迁移, 界面电场, 异质结光阳极

Abstract:

Z-scheme photocatalytic system has been regarded as a popular field of research in photoelectrochemical (PEC) water splitting. Among the many obstacles facing a Z-scheme photocatalytic system, the analysis methods of interfacial Z-scheme charge transfer still remain a significant challenge. Hence, in this study, CdS/Ti-Fe2O3 heterojunction photoanodes are elaborately designed to explore the charge-transfer behavior in PEC water splitting. In this study, photophysical measurements, including the Kelvin probe measurement, surface photovoltage spectroscopy (SPV), and transient photovoltage spectroscopy (TPV), are used to monitor the migration behavior of photogenerated charges at the interface electric field of CdS/Ti-Fe2O3 Z-scheme heterojunction photoanodes. The Kelvin probe and SPV measurements demonstrate that CdS/Ti-Fe2O3 interfacial driving force favors the rapid transfer of photoexcited electrons to CdS. The double-beam strategy based on TPV indicates that more electrons of Ti-Fe2O3 are combined with the holes of CdS owing to the intensive interface electric field. The results of these measurements successfully prove the Z-scheme migration mechanism of CdS/Ti-Fe2O3 photoanodes. Benefiting from the desirable charge transfer at the interface electric field, CdS/Ti-Fe2O3 photoanodes exhibit superior photocatalytic oxygen evolution reaction performance compared with that of pure Ti-Fe2O3. The photocurrent density of the 25CdS/Ti-Fe2O3 photoanode reaches 1.94 mA/cm2 at 1.23 V versus reversible hydrogen electrode without excess cocatalyst, and it is two times higher than that of pure Ti-Fe2O3 photoanode. Therefore, an outstanding strategy is provided in this study to prove the Z-scheme charge-transfer mechanism of photocatalytic systems in PEC water splitting.

Key words: CdS/Ti-Fe2O3, Z-scheme, Charge transfer, Interface electric field, Heterojunction photoanodes