催化学报 ›› 2022, Vol. 43 ›› Issue (12): 2938-2945.DOI: 10.1016/S1872-2067(22)64120-2

• 视角 • 上一篇    下一篇

克服高温二氧化碳电解产生的碳沉积问题

王同宝a, 韩光泰a, 王子运b,#(), 王昱沆a,*()   

  1. a苏州大学功能纳米与软物质研究院, 江苏省碳基功能材料与器件重点实验室, 江苏苏州215123, 中国
    b奥克兰大学化学科学学院, 新西兰
  • 收稿日期:2022-04-29 接受日期:2022-05-31 出版日期:2022-12-18 发布日期:2022-10-18
  • 通讯作者: 王子运,王昱沆
  • 基金资助:
    国家自然科学基金(2219088);江苏省自然科学基金(BK20210699)

Overcoming coke formation in high-temperature CO2 electrolysis

Tongbao Wanga, Guangtai Hana, Ziyun Wangb,#(), Yuhang Wanga,*()   

  1. aInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
    bSchool of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
  • Received:2022-04-29 Accepted:2022-05-31 Online:2022-12-18 Published:2022-10-18
  • Contact: Ziyun Wang, Yuhang Wang
  • About author:Ziyun Wang (The University of Auckland) received his B.Sc. degree from East China University of Science and Technology (China) in 2012, and Ph.D. degree from the Queen’s University of Belfast (United Kingdom) in 2015. He carried out postdoctoral research at Stanford University with Prof. Jens Nørskov and University of Toronto with Prof. Edward Sargent. In 2021, he joined the School of Chemical Sciences, the University of Auckland as a Lecturer. His research interests mainly focus on computational chemistry method development and their application on CO2 electrochemical reduction. He has published more than 60 peer-reviewed papers in top journals such as Nature, Nature Energy, Nature Catalysis, Nature Communications, Journal of the American Chemical Society, etc.
    Yuhang Wang is a Professor at the Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University. He received his B.Sc. degree from Northwest University (China) in 2012, and Ph.D. degree in Chemistry from Fudan University in 2017 under the supervision of Prof. Gengfeng Zheng. He then worked as a postdoctoral fellow with Prof. Edward Sargent at the University of Toronto from 2017 to 2020. Yuhang Wang is the recipient of Jiangsu Specially-Appointed Professors (2022), and is currently a Youth Editorial Board Member of SmartMat, Wiley and an Early Career Researcher Editorial Board Member of Materials Today Sustainability, Elsevier. His research interest includes CO2 electroreduction, ammonia electrosynthesis, and electrocatalytic reactor engineering.
  • Supported by:
    National Natural Science Foundation of China(2219088);Natural Science Foundation of Jiangsu Province of China(BK20210699)

摘要:

固体氧化物电解池(SOEC)中的高温二氧化碳电还原(HT-CO2RR)具有对产物CO选择性近乎100%、能量效率高且产率可达到工业标准等特点. 该技术能够将可再生能源、二氧化碳和水转化成高能量化合物, 是实现碳中和的有效途径, 具有较强的应用前景. 但这种二氧化碳利用方法容易受电解过程中的积碳影响, 严重损害电解池的能量效率和运行寿命. 近年来, 研究者们努力分析积碳问题, 并通过改变反应条件来抑制积碳生成, 或尝试设计无积碳产生的电极材料. 然而, 这些抑制积碳的策略同时牺牲了催化活性和能量效率. 因此, 未来研究需要兼顾催化电极的性能、电解池的能量效率和稳定性.

本文概述了关于减少HT-CO2RR中积碳的研究进展, 讨论可能加速其大规模实际应用的未来研究方向, 并阐述了SOEC的HT-CO2RR中积碳的形成机制. HT-CO2RR中积碳的形成是由于CO发生了歧化反应: 2CO (g) ⇌ C + CO2 (g), 也被称为Boudouard反应. 该反应涉及两个基本步骤: (1)表面CO*解离为C*和O*, (2)表面CO*和O*耦合形成CO2*. 整个反应受CO*, C*, O*和CO2*表面覆盖率影响, 高CO*和C*覆盖率推动反应向积碳生成的方向进行, 而高CO2*和O*覆盖率则有利于逆反应发生.

Ni通常被认为是HT-CO2RR中Boudouard反应的催化剂. 密度泛函理论(DFT)研究发现, 较低的CO解离(即CO* + * → C* + O*)势垒和较强的C吸附能可能会导致高表面C*覆盖率, 促进积碳生成. 因此, 与具有高配位数的Ni(111)表面相比, 具有较低配位数的Ni(211)表面更容易使HT-CO2RR反应过程发生积碳. 同时, 由于SOEC中的CO解离涉及来自外部电路的电子转移, 从而使C从+2价降低到0价, 施加阴极偏压会进一步降低CO解离的反应势垒和自由能. 但前期的实验和模拟表明, 在多数情况下, 系统中的CO化学歧化更可能是HT-CO2RR中积碳形成的主要原因. 但也有部分研究发现, 在基于ZrO2和CeO2的SOEC体系中, 积碳也可能由这些氧化物直接电化学催化CO2或CO还原形成, 并且施加电压会促进积碳产生. 此外, 有研究表明, 过高的局部CO浓度也会导致积碳形成. 提升电极孔隙率、降低电极厚度, 可有效促进气体扩散, 降低催化电极表面的局部CO浓度, 从而抑制积碳形成.

目前已有的预防SOEC中HT-CO2RR积碳形成的策略包括使用基于电解质支撑结构的电化学池促进CO扩散以及开发非Ni基催化剂, 如完全基于CeO2材料的电极. 然而, 这些设计都存在一个重要缺陷, 即较低的离子或电子电导会大幅增加电解池的阻抗, 严重降低能量效率. 对此, 本文提出两种可能有效的解决方案: 一种是使用对C*亲和力更低的金属, 如Ag, Cu代替Ni, 并与CeO2基离子导体结合, 制备催化电极; 另一种是使用对CO2*吸附能力更强, 可以促进Boudouard逆反应进行且同时具备较高电子和氧离子电导率的钙钛矿氧化物材料制备电极. 这两种策略都是通过对表面吸附物种的有效控制, 实现系统抗积碳性能的提升. 同时, 这些策略需要与电解质支撑固体电解池制备工艺优化以及气体扩散进一步增强等措施相结合, 从而实现工业级的高性能高温CO2电解转化.

关键词: 高温CO2电还原, 固体氧化物电化学池, 积碳, Boudouard反应, 稳定性

Abstract:

High-temperature CO2 reduction reaction (HT-CO2RR) in solid oxide electrochemical cells (SOECs) features near-unity selectivity, high energy efficiency, and industrial relevant current density for the production of CO, a widely-utilized “building block” in today’s chemical industry. Thus, it offers an intriguing and promising means to radically change the way of chemical manufacturing and achieve carbon neutrality using renewable energy sources, CO2, and water. Albeit with the great potential of HT-CO2RR, this carbon utilization approach, unfortunately, has been suffering coke formation that is seriously detrimental to its energy efficiency and operating lifetime. In recent years, much effort has been added to understanding the mechanism of coke formation, managing reaction conditions to mitigate coke formation, and devising coke-formation-free electrode materials. These investigations have substantially advanced the HT-CO2RR toward a practical industrial technology, but the resulting coke formation prevention strategies compromise activity and energy efficiency. Future research may target exploiting the control over both catalyst design and system design to gain selectivity, energy efficiency, and stability synchronously. Therefore, this perspective overviews the progress of research on coke formation in HT-CO2RR, and elaborates on possible future directions that may accelerate its practical implementation at a large scale.

Key words: High-temperature CO2 electroreduction, Solid oxide electrochemical cell, Coke formation, Boudouard reaction, Stability