催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2183-2192.DOI: 10.1016/S1872-2067(22)64129-9

• 论文 • 上一篇    下一篇

打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示

蒋亚飞a,b, 刘锦程a, 许聪俏b, 李隽a,b, 肖海a,*()   

  1. a清华大学化学系, 有机光电与分子工程教育部重点实验室, 北京100084
    b南方科技大学化学系, 广东深圳518055
  • 收稿日期:2022-02-01 接受日期:2022-04-12 出版日期:2022-08-18 发布日期:2022-06-20
  • 通讯作者: 肖海
  • 基金资助:
    国家自然科学基金(22122304);国家自然科学基金(21903047);国家自然科学基金(22033005);国家自然科学基金(22038002);广东省基础与应用基础研究基金联合基金(2020A1515110282);广东省催化化学重点实验室(2020B121201002)

Breaking the scaling relations for efficient N2-to-NH3 conversion by a bowl active site design: Insight from LaRuSi and isostructural electrides

Ya-Fei Jianga,b, Jin-Cheng Liua, Cong-Qiao Xub, Jun Lia,b, Hai Xiaoa,*()   

  1. aDepartment of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
    bDepartment of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • Received:2022-02-01 Accepted:2022-04-12 Online:2022-08-18 Published:2022-06-20
  • Contact: Hai Xiao
  • About author:Hai Xiao obtained his B.Sc. and M.Sc. in Chemistry both from Tsinghua University. He later earned his Ph.D. from California Institute of Technology (Caltech), and continued to work at Caltech as a post-doc and research scientist. He joined Tsinghua University in 2017 and is currently an associate professor. His research area lies in computational chemistry, and his current research interests focus on the design of heterogenous catalytic systems and understanding of catalysis at electrochemical interfaces. He served as a young member of the Editorial Board of Chin. J. Catal. since 2020.
  • Supported by:
    National Natural Science Foundation of China(22122304);National Natural Science Foundation of China(21903047);National Natural Science Foundation of China(22033005);National Natural Science Foundation of China(22038002);Guangdong Basic and Applied Basic Research Foundation(2020A1515110282);Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)

摘要:

合成氨反应是现代工业和农业中提供所需氮源的关键基础化学过程, 但在温和条件下实现低能耗、高效率合成氨反应的多相催化剂设计依然是一个挑战. 其中, 一个普适的限制起源于线性标度关系, 即合成氨反应中的一系列含氮物种在催化剂表面的吸附能构成正相关的线性关系, 这使得同时提高催化剂活化N2与释放NH3的能力形成矛盾, 最终导致最优的催化剂设计需要采用折衷办法, 即:最优催化剂对含氮物种的吸附既不能太强也不能太弱, 这正是Sabatier原则. 因此, 线性标度关系导致了催化剂设计中的火山型曲线, 其顶点限制了最优催化剂的性能. 如果想进一步优化催化剂性能, 超越该限制, 需要设计能打破合成氨反应中线性标度关系的多相催化剂活性位点.

基于电子化物LaRuSi催化合成氨反应机理的理论研究, 本文揭示了一种能打破合成氨反应中线性标度关系的碗型活性中心设计. 采用第一性原理计算, 首先确认了LaRuSi催化剂最稳定的(001)-La表面可高效催化合成氨反应, 其最优反应路径为解离机理. 通过理论分析发现, (001)-La表面上的碗型活性位点在高效催化中起到了关键作用. 该碗型活性位点由四个带正电的表面La离子和一个在催化过程中可变正负电荷的亚表面Si原子组成, 其既可通过有利的静电吸引和共价作用, 促进N2的活化以及裂解; 又可通过静电排斥作用减弱NHx物种的吸附, 促进NH3的脱附释放. 因此, 该碗型活性位点在概念上打破了合成氨反应中的线性标度关系.

为了进一步定量确定被打破的线性标度关系, 对比了一系列与LaRuSi同构的电子化物以及一系列过渡金属表面, 确认碗型活性位点打破了NHx物种与N物种吸附能的正相关线性关系.

本文还讨论了几种可能的包含类似碗型活性位点设计的合成氨催化体系, 包括: 覆盖了碱金属离子的过渡金属表面, 稀土金属和后过渡金属组成的合金体系(比如YRu2), 以及过渡金属氢化物与碱金属组成的三元复合物(比如Li4H6Ru). 综上, 碗型活性位点展示了一种新的高效合成氨催化剂设计概念, 可打破合成氨反应中的线性标度关系, 超越火山型曲线顶点对催化性能的限制, 这为合成氨反应以及其它受线性标度关系所限制的催化反应的高效多相催化剂的理性设计提供了新的启示.

关键词: 合成氨反应, 线性标度关系, 多相催化剂设计, 第一性原理计算

Abstract:

The design of optimal heterogeneous catalysts for N2-to-NH3 conversion is often dictated by the scaling relations, which result in a volcano curve that poses a limit on the catalytic performance. Herein, we reveal a bowl active site that can break the scaling relations, through investigating the catalytic mechanisms of N2-to-NH3 conversion on the lanthanide intermetallic electride catalyst LaRuSi by first-principles modeling. This bowl active site, composed of four surface La cations and one subsurface Si atom rich in electrons, plays the key role in enabling efficient catalysis. With adaptive electrostatic and orbital interactions, the bowl active site promotes the adsorption and activation of N2 that delivers facile cleavage of N‒N bond, while destabilizes the adsorptions of *NHx (x = 1, 2, 3) species, which facilitates the release of the final NH3 product. By comparison with other electride catalysts isostructural to LaRuSi, we confirm the breaking of scaling relations between the adsorptions of *NHx species and that of *N on the bowl active site. Thus, this bowl active site presents a design concept that breaks the scaling relations for highly efficient heterogeneous catalysis of N2-to-NH3 conversion.

Key words: N2-to-NH3 conversion, Scaling relations, Heterogeneous catalyst design, First-principles calculations