催化学报 ›› 2022, Vol. 43 ›› Issue (12): 3161-3169.DOI: 10.1016/S1872-2067(22)64131-7

• 论文 • 上一篇    下一篇

高压下富含晶界的铋纳米片高效电还原CO2制甲酸盐

阮孙红a,, 张彪a,, 邹金含a,b, 钟万福a, 何潇洋a, 卢进海a, 张庆红a,#(), 王野a,b, 谢顺吉a,b,*()   

  1. a厦门大学化学化工学院, 固体表面物理化学国家重点实验室, 能源材料化学协同创新中心, 醇醚酯化工清洁生产国家工程实验室, 福建厦门361005
    b福建省能源材料科学与技术创新实验室(IKKEM), 福建厦门361005
  • 收稿日期:2022-03-31 接受日期:2022-05-05 出版日期:2022-12-18 发布日期:2022-10-18
  • 通讯作者: 张庆红,谢顺吉
  • 基金资助:
    国家科技部重点研发计划(2019YFE0104400);国家自然科学基金(22022201);国家自然科学基金(21972115);国家自然科学基金(22121001);福建省嘉庚创新实验室(RD2020020201)

Bismuth nanosheets with rich grain boundaries for efficient electroreduction of CO2 to formate under high pressures

Sunhong Ruana,, Biao Zhanga,, Jinhan Zoua,b, Wanfu Zhonga, Xiaoyang Hea, Jinhai Lua, Qinghong Zhanga,#(), Ye Wanga,b, Shunji Xiea,b,*()   

  1. aState Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    bInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, Fujian, China
  • Received:2022-03-31 Accepted:2022-05-05 Online:2022-12-18 Published:2022-10-18
  • Contact: Qinghong Zhang, Shunji Xie
  • About author:First author contact:Contributed equally to this work.
  • Supported by:
    National Key Research and Development Program of Ministry of Science and Technology(2019YFE0104400);National Natural Science Foundation of China(22022201);National Natural Science Foundation of China(21972115);National Natural Science Foundation of China(22121001);Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(RD2020020201)

摘要:

可再生能源驱动的电催化还原CO2制化学品和燃料是实现碳中和目标十分具有吸引力的技术. 在电催化还原CO2产物中, 综合考虑产物的经济价值和还原所需能量, 甲酸是最可行的产物之一. 甲酸用途十分广泛, 不仅可以用于生产各种高值化学品, 还可作为氢的载体用于燃料电池. 目前发展的电催化还原CO2制甲酸或甲酸盐的催化剂主要有Pd, Cd, Hg, Sn, In, Tl, Pb和Bi等, 其中Bi基催化剂具有价廉、环境友好和选择性高等特点. 此外, 电解器的结构也是影响反应性能的关键因素. 传统的常压H池中, 由于CO2溶解度低和扩散限制, 反应电流密度很难超过100 mA cm-2. 流动池和膜电极反应器体系由于使用气体扩散电极, 可以避免CO2溶解度低的问题, 获得较高的反应电流密度, 但依然存在反应器结构复杂难控等问题. 高压H池操控简单, 而且可以使大量的CO2溶解于溶液中, 已有研究证明在高压H池中可以获得超过100 mA cm-2的反应电流密度. 同时, 有研究发现, CO2的压力会显著影响铜基催化剂上产物的选择性. 然而, 目前对高压H池中电催化还原CO2的研究较少. 因此, 进一步设计高压条件下电催化还原CO2制甲酸的高效催化剂, 并研究其独特规律, 具有重要意义.

本文通过简单的一步水热方法合成了BiPO4纳米多面体, 并在高压H池中系统研究了其电催化还原CO2制甲酸盐的性能. 实验发现, BiPO4纳米多面体衍生的催化剂(BiPO4-derived)在高压H池中具有很高的活性. 在CO2压力为3.0 MPa的KHCO3溶液中, 控制阴极电位为-0.81 V vs. RHE, 电催化还原CO2制甲酸盐的法拉第效率为90%, 甲酸盐部分电流密度可达534 mA cm-2, 甲酸盐生成速率为9.9 mmol h-1 cm-2. X射线衍射、扫描电子显微镜、高分辨透射电子显微镜、循环伏安等表征结果表明, BiPO4纳米多面体在高压CO2还原反应条件下会演变成具有丰富晶界的金属铋纳米片; 而在常压或低压条件下, BiPO4纳米多面体演变生成的金属铋纳米片则几乎没有晶界. 对比发现, 丰富晶界的BiPO4-derived催化剂具有更高的电催化还原CO2制甲酸盐的活性和选择性. 理论计算结果表明, 在金属铋的晶界表面, 电荷分布会发生明显变化, 从而显著促进CO2的活化以及反应中间HCOO*的稳定性, 使得电催化还原CO2制甲酸的反应路径从能量上看更加有利, 从而提高了反应的选择性和活性.

本文展示了在高压H池中, BiPO4纳米多面体在高压下衍生的催化剂在电催化还原CO2制甲酸盐反应中具有较好的活性和选择性. 研究发现, 在高压CO2还原条件下, 催化剂前驱体可以衍生成具有丰富晶界的高活性催化剂, 是一种构筑高效催化剂的方法. 综上, 本文将为电催化还原CO2领域, 尤其是面向CO2工业应用的高效催化剂设计制备提供一些有用的参考.

关键词: 电催化还原CO2, 甲酸盐, 高压H池, 铋纳米片, 晶界

Abstract:

Electrochemical CO2 reduction reaction (CO2RR) driven by sustainable energy has emerged as an attractive route to achieve the target of carbon neutral. Formate is one of the most economically viable products, and electrocatalytic CO2RR to formate is a promising technology. High-pressure H-cell electrolyzer is easy to operate and allows high CO2 solubility for realizing high current density, but the design of highly efficient catalysts for working under high CO2 pressures remains challenging. Bismuth-based catalysts exhibit high formate selectivity, but suffer from limited activity. Here, we report a high-performance catalyst, which is derived from BiPO4 nanopolyhedrons during electrocatalytic CO2RR to formate in neutral solution under high CO2 pressures. A high partial current density of formate (534 mA cm-2) and formate formation rate (9.9 mmol h-1 cm-2) with a formate Faradaic efficiency of 90% have been achieved over BiPO4-derived catalyst at an applied potential of -0.81 V vs. RHE under 3.0 MPa CO2 pressure. We discover that BiPO4 nanopolyhedrons evolve into metallic Bi nanosheets with rich grain boundaries in electrocatalytic CO2RR under high CO2 pressures, and the grain boundaries of the BiPO4-derived catalyst play a vital role in promoting electrocatalytic CO2RR to formate. Our theoretical studies reveal that the charge redistribution occurs at the grain boundaries of Bi surface, and this promotes CO2 activation and increases HCOO* intermediate stability, thus making the pathway for CO2RR to formate more selective and energy-favorable. This work not only demonstrates a highly efficient catalyst for CO2RR to formate but also discovers a unique feature of catalyst evolution under high CO2 pressures.

Key words: Electrocatalytic CO2 reduction, Formate, High-pressure H-cell, Bi nanosheet, Grain boundary