催化学报 ›› 2023, Vol. 45: 141-151.DOI: 10.1016/S1872-2067(22)64178-0

• 论文 • 上一篇    下一篇

解析光电化学氮还原合成氨中局域电子结构和合金化的协同效应

郑建云a,1,*(), 吕艳红a,b,1, 黄爱彬c,d,1, 曹逊c,d,*(), 蒋三平f,*(), 王双印a,*()   

  1. a湖南大学化学与化工学院, 化学/生物传感与化学计量国家重点实验室, 湖南长沙410082, 中国
    b湖南第一师范学院, 物理与化学学院, 湖南长沙410202, 中国
    c中国科学院上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海200050, 中国
    d中国科学院大学, 材料科学与光电子工程中心, 北京100049, 中国
    e澳大利亚同步辐射光源, 澳大利亚
    f科廷大学西澳矿业学院, 澳大利亚
  • 收稿日期:2022-07-13 接受日期:2022-09-01 出版日期:2023-02-18 发布日期:2023-01-10
  • 通讯作者: 郑建云,曹逊,蒋三平,王双印
  • 作者简介:第一联系人:

    1共同第一作者

  • 基金资助:
    国家自然科学基金(22075075);国家重点研发计划(2020YFA0710000);国家重点研发计划(2021YFA1500900);湖南省杰出青年科学家基金(2022JJ10023);湖南省湖湘人才工程(2021RC3051);湖南省自然科学基金(2021JJ40140);湖南省教育厅研究基金(21B0812)

Deciphering the synergy between electron localization and alloying for photoelectrochemical nitrogen reduction to ammonia

Jianyun Zhenga,1,*(), Yanhong Lyua,b,1, Aibin Huangc,d,1, Bernt Johannessene, Xun Caoc,d,*(), San Ping Jiangf,*(), Shuangyin Wanga,*()   

  1. aState Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
    bSchool of Physics and Chemistry, Hunan First Normal University, Changsha 410202, Hunan, China
    cState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    dCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
    eAustralian Synchrotron, Clayton, Victoria 3168, Australia
    fWA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia
  • Received:2022-07-13 Accepted:2022-09-01 Online:2023-02-18 Published:2023-01-10
  • Contact: Jianyun Zheng, Xun Cao, San Ping Jiang, Shuangyin Wang
  • About author:First author contact:

    1Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(22075075);Key R&D Program of China(2020YFA0710000);Key R&D Program of China(2021YFA1500900);Outstanding Youth Scientist Foundation of Hunan Province(2022JJ10023);Hunan Province of Huxiang Talent project(2021RC3051);Provincial Natural Science Foundation of Hunan(2021JJ40140);Research Foundation of Education Bureau of Hunan Province(21B0812)

摘要:

氨是氮肥等工业的主要原料, 因此氨产量居各种化工产品的首位. 目前, 90%以上的氨通过传统Haber-Bosch法制得, 但该反应需要在高温高压下进行, 消耗大量能源, 同时排放大量CO2. 基于此, 科研人员致力于寻求一种绿色、高效的合成氨替代方法. 其中, 利用太阳能, 通过光电化学氮还原合成氨是最有潜力和竞争力的方法之一, 该方法也为有效利用太阳能提供了新途径. 目前, 虽然光电化学氮还原研究取得了一定进展, 但是氨产率和氮转换效率低限制了其经济可行性. 这主要归因于四个方面: (1)牢固的氮氮三键使得氮气难以活化; (2)复杂的多步和多电子反应使得动力学迟缓; (3)析氢竞争反应降低了太阳能-氨的转换效率; (4)氮气在水溶液中的溶解度低导致吸附在光电阴极表面的氮气较少.
为解决上述问题, 本文通过溅射法在B掺杂的p型(100)晶向硅片上共沉积Au, Co和Pd, 然后在600 °C下和空气中快速退火, 制得由助催化剂/保护层/光吸收层组成的层级硅基光电阴极, 并用于氮还原合成氨. 成分和结构表征结果表明, 层级硅基光电阴极由p型硅光吸收层、二氧化硅保护薄层和AuCoPd合金纳米颗粒助催化剂组成, 该电极可表示为AuCoPd-CoOx/ SiO2/Si, 简称ACP电阴极. 角分辨X射线光电子能谱和同步辐射X射线吸收光谱结果表明, 形成了局域电子结构AuCoPd合金纳米颗粒, 并可分析出Au离子和Pd离子在纳米颗粒上的比例和分布. 变压光电化学实验结果表明, ACP光电阴极表现出较好的氮还原合成氨性能, 在3 MPa下氨产率达到22.2 ± 0.4 μg·h-1·cm-2, 法拉第效率达到22.9%. 同时, ACP光电阴极的光电化学氮还原行为遵循勒夏特列(化学平衡移动)原理: 随着反应压强增加, 氨产率、法拉第效率和起始光电压均随之增大. 原位X射线光电子能谱和原位同步辐射X射线吸收光谱结果表明, Au离子和Pd离子为氮还原反应的活性位点, 为氮气活化及加氢提供反应场所; 同时, 揭示了邻近的Pd元素为Au物种上活化的氮气提供了活性质子, 促进了氮还原合成氨反应进程. 综上, 本文为设计高效且稳定的光电阴极并应用于光电化学氮还原反应提供一定的参考.

关键词: 光电化学氮固定, 电子局域结构, 合金化, 加压反应, 协同机理

Abstract:

Photoelectrochemistry that directly takes advantage of solar energy by photoelectrodes is a promising green route for the nitrogen fixation, but is currently far from practical application. It is necessary to understand the structure-reactivity interplay of the photocathodes for rendering rational improvement of the existing challenges. Here, we make efforts to reveal AuCoPd-CoOx/SiO2/Si photocathodes capable of selective photoelectrochemical conversion of nitrogen to ammonia at varied pressures, achieving an ammonia yield rate of 22.2 ± 0.4 μg·h-1·cm-2 and a faradic efficiency of 22.9% at -0.1 V vs. reversible hydrogen electrode under 3-MPa nitrogen. In particular, we focus on the remarkable, but often subtle, roles of the synergy between electron localization and alloying in determining the reactivity of the photocathodes. Specifically, operando XPS and XAS illustrate that the oxidation states of Au and Pd enable the photoinduced electron capture as the reduction sites to produce the *N2 and *H active species, respectively, facilitating the couple of N-H for ammonia synthesis. Although this study is not sufficient to break through bottleneck, there is much insight on the design of efficient and robust photocathodes for photoelectrochemical nitrogen fixation.

Key words: Photoelectrochemical nitrogen fixation, Electron localization, Alloying, Pressurized reaction, Synergy mechanism