催化学报

• •    

有机电化学-电流驱动未来

周鹤洋a, 唐海涛a,*, 何卫民b,*   

  1. a广西师范大学化学与药学学院, 省部共建药用资源化学与药物分子工程国家重点实验室, 广西桂林541004;
    b南华大学化学化工学院, 湖南衡阳421001
  • 收稿日期:2022-09-27 接受日期:2022-09-27
  • 基金资助:
    中央引导地方科技发展资金项目(桂科ZY21195014); 广西自然科学基金杰出青年基金项目(2021GXNSFFA220005); 国家自然科学基金(22061003, 22161008).

Organic electrochemistry-current transfer future

He-Yang Zhoua, Hai-Tao Tanga,*, Wei-Min Heb,*   

  1. aState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, Guangxi, China;
    bSchool of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China
  • Received:2022-09-27 Accepted:2022-09-27
  • Contact: *E-mail: httang@gxnu.edu.cn (H. Tang), weiminhe@usc.edu.cn (W. He)
  • About author:Wei-Min He obtained Ph.D. degree from Hunan University in 2012 and is currently a Professor at University of South China. His research interest are development of green & sustainable technology in organic synthesis. Hai-Tao Tang received his Ph.D. degree from Xiamen University in 2017 and is currently an Associate Professor at Guangxi University. His current research interests focus on electrochemical synthesis and heterogeneous catalysis
  • Supported by:
    Guangxi Natural Science Foundation of China (2021GXNSFFA220005), the Central Government Guides Local Science and Technology Development Fund Projects (guike ZY21195014) and the National Natural Science Foundation of China (22061003, 22161008).

摘要: 电化学中最基本的作用力是电子-原子核之间的静电吸引力, 它通过施加电势使电子加入或脱离与原子核的相互作用, 因而, 它是最经典的氧化还原化学. 1800年第一个电池Volta Pile的发明实现了电子在电路中的流动, 标志着有机电化学的开端. 自19世纪以来, 在科技革命的浪潮中, 有机电化学合成取得了巨大发展, 例如美国Manuel M. Baizer教授研究的丙烯腈电解还原二聚合成己二腈实现了工业化生产; 纳尔科化学公司随后实现了四乙基铅的电化学工业化合成. 这两个工业化案例的成功, 使有机电化学合成进入了快速发展期. 氧化还原是化学反应中的三大基本反应之一, 对其进行研究, 能极大地促进人类社会的发展. 近年, 有机合成工作者通过电化学策略代替传统氧化还原试剂实现了一系列氧化脱氢交叉偶联、还原偶联、金属介导的C‒H键活化、不对称合成反应, 极大地丰富了复杂化合物的合成方法库.

关键词: 有机电化学合成, 电子转移, 氧化还原反应

Abstract: The electrostatic attraction between electrons and nuclei is the most fundamental force in electrochemistry. It causes electrons to enter or quit interactions with nuclei by providing potential. As a result, it is the most basic redox chemistry. Organic electrochemistry has made achievements in oxidative hydrogen evolution coupling and sacrificial anode electroreduction in recent years due to its green and efficient capacity to create reactive intermediates. This paper primarily describes the fields of optimizing electrode materials, developing new electrolytic catalysts, paired electrolysis, photoelectrocatalysis, bioelectrosynthesis, and artificial intelligence-assisted electrosynthesis from the perspectives of reaction mechanism optimization and interdisciplinary combination.

Key words: Organic electrochemical synthesis, Electron transfer, Redox reaction