催化学报 ›› 2025, Vol. 69: 176-184.DOI: 10.1016/S1872-2067(24)60164-6

• 论文 • 上一篇    下一篇

钯/铜共催化原位生成烯烃多位点官能化合成咔唑基聚集诱导发光分子

张美琦a,1, 闫雪源b,1, 刘峥a, 白洪源a, 马红卫a, 黄跟平b,*(), 张波c, 徐德祝c, 韩文佳d, 韩丽a,*(), 郭腾龙c,*()   

  1. a大连理工大学化工学院, 精细化工国家重点实验室, 高分子科学与工程辽宁省重点实验室, 辽宁大连 116012
    b天津大学理学院, 天津 300072
    c中国科学院大连化学物理研究所, 催化与新材料研究室, 辽宁大连 116023
    d齐鲁工业大学(山东省科学院), 生物基材料与绿色造纸国家重点实验室, 山东济南 250353
  • 收稿日期:2024-09-10 接受日期:2024-10-15 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: hanli@dlut.edu.cn (韩丽), gphuang@tju.edu.cn (黄跟平), guotl1210@dicp.ac.cn (郭腾龙).
  • 作者简介:第一联系人:

    1共同第一作者.

  • 基金资助:
    国家自然科学基金(22108272);国家自然科学基金(22073066);齐鲁工业大学(山东省科学院)生物基材料与绿色造纸国家重点实验室开放基金(GZKF202224)

Pd/Cu-cocatalyzed multi-site functionalization of in-situ generated alkenes toward carbazole-based aggregation-induced emission luminogens

Meiqi Zhanga,1, Xueyuan Yanb,1, Zheng Liua, Hongyuan Baia, Hongwei Maa, Genping Huangb,*(), Bo Zhangc, Dezhu Xuc, Wenjia Hand, Li Hana,*(), Tenglong Guoc,*()   

  1. aState Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, Liaoning, China
    bDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
    cCAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    dState Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China
  • Received:2024-09-10 Accepted:2024-10-15 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: hanli@dlut.edu.cn (L. Han), gphuang@tju.edu.cn (G. Huang), guotl1210@dicp.ac.cn (T. Guo).
  • About author:First author contact:

    1 Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(22108272);National Natural Science Foundation of China(22073066);Foundation of State Key Laboratory of Biobased Material and Green Papermaking(GZKF202224)

摘要:

烯烃官能化是一种将简单原料高效转化为复杂分子的有效手段, 目前, 烯烃官能化研究主要集中在单位点和双位点的官能化, 而烯烃多位点官能化由于涉及多个反应位点(如碳碳双键和Csp3‒H键), 且同时构建多种化学键,因此反应挑战更大, 仅有的几例报道存在反应机理单一, 产物类型受限等问题.. 因此, 开发新的反应路径, 通过烯烃多位点官能化合成结构多样的功能分子具有重要的研究意义.

本文以吲哚、β-氯代酮以及γ-氯代酮为底物, 通过钯铜共催化的原位生成烯烃多位点官能化合成了多羰基取代咔唑衍生物, 该反应体系展现出较好的官能团兼容性和化学选择性, 烷基、酯基、氟、氯、氰基、醚等官能团都能够被很好地兼容. 条件控制实验和同位素标记实验结果表明, 反应过程中β-氯代酮原位生苯基乙烯基酮中间体, γ-氯代酮经自由基氧原子转移原位生成苯基乙烯基二酮中间体, 随后通过C‒H烯基化/Diels-Alder环加成/脱氢芳构化历程合成目标产物, 密度泛函理论计算结果进一步证明了该机理的合理性; 将多羰基咔唑产物进一步衍生化, 通过与邻苯二胺的缩合环化反应合成了一系列咔唑联喹喔啉衍生物, 其中, 苯甲酰基和喹喔啉基为电子受体, 咔唑骨架为电子供体, 形成了独特的电子受体-供体-受体(A-D-A)构型. 光物理学特性研究表明, 咔唑联喹喔啉化合物具有典型的扭曲分子内电荷转移聚集诱导发光特性(TICT-AIE), 利用TICT-AIE材料对不同极性环境的快速响应性, 将咔唑联喹喔啉分子作为荧光探针, 实现了不同极性高分子材料(聚苯乙烯与聚丙烯腈混合物)的微相分离可视化研究.

综上, 本文利用钯铜共催化体系, 通过原位生成烯烃的多位点官能化成功合成了多羰基取代咔唑衍生物, 简单衍生化后即可获得具有TICT-AIE特性的咔唑联喹喔啉衍生物, 为咔唑基AIE分子的设计、合成以及应用提供了新的研究思路.

关键词: 多位点官能化, 咔唑, 聚集诱导发光分子, 自由基氧原子转移, 微相分离

Abstract:

In contrast to the predominant mono or difunctionalization of alkenes, the multi-site functionalization of alkenes involving the synergistic formation of more than two new C−C or C−X bonds is much challenging, especially for developing new reaction pathway to afford the functional heterocycle compounds with aggregation-induced emission (AIE) property has been rarely reported. In present work, the multi-site functionalization of in situ generated alkenes with indoles has been developed for the synthesis of diversely functionalized carbazoles through the synergistic construction of multiple C-C bonds and C=O bond. A proposed reaction sequence involving C-H alkenylation/radical oxygen atom transfer/Diels-Alder cycloaddition/dehydrogenative aromatization was supported by experiments and density functional theory calculations. Further derivative carbazole-linked-quinoxaline skeletons represent a class of AIEgens with acceptor-donor-acceptor configuration, which generated the desired twisted intramolecular charge transfer (TICT) AIE properties and could be used as fluorescent probes for detecting the micrometer-sized phase separation of polymer blends. The protocol provides a concise route for the synthesis and application of carbazole-based AIE luminogens.

Key words: Multi-site functionalization, Carbazoles, Aggregation-induced emission, luminogens, Radical oxygen atom transfer, Microphase separation