催化学报 ›› 2025, Vol. 68: 51-82.DOI: 10.1016/S1872-2067(24)60165-8

• 综述 • 上一篇    下一篇

用于光电化学水分解的氮化钽光阳极的研究进展

余文杰a,b, 冯超a,b, 李荣华a,b, 张贝贝a,b, 李严波a,b,*()   

  1. a电子科技大学基础与前沿研究院, 四川成都 611731
    b电子科技大学量子物理与光量子信息教育部重点实验室, 四川成都 611731
  • 收稿日期:2024-07-18 接受日期:2024-09-25 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子信箱: yanboli@uestc.edu.cn (李严波).
  • 基金资助:
    国家重点研发计划(2023YFA1507103);国家自然科学基金(22279013);国家自然科学基金(22202031)

Recent advances in tantalum nitride for photoelectrochemical water splitting

Wenjie Yua,b, Chao Fenga,b, Ronghua Lia,b, Beibei Zhanga,b, Yanbo Lia,b,*()   

  1. aInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
    bKey Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
  • Received:2024-07-18 Accepted:2024-09-25 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: yanboli@uestc.edu.cn (Y. Li).
  • About author:Yanbo Li (Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China) received his B.S. in 2005, M.S. degree in 2007 from Shanghai Jiao Tong University, Ph.D. degree in 2010 from The University of Tokyo (Japan). He carried out postdoctoral research at The University of Tokyo from 2010 to 2014, at Lawrence Berkeley National Laboratory (USA) from 2014 to 2016. Since 2016, he has been working at Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China. His research interests include semiconductor photophysics, photochemistry, photoelectrochemical water splitting for hydrogen production, self-healing catalysts. He has co-authored more than 80 peer-reviewed papers.
  • Supported by:
    National Key Research and Development Program of China(2023YFA1507103);National Natural Science Foundation of China(22279013);National Natural Science Foundation of China(22202031)

摘要:

面对全球能源危机与环境污染的双重挑战, 利用人工光合作用通过太阳能生产可再生燃料被视为一种理想解决方案. 其中, 将太阳能转化为氢能被视为最有前景和有效的方法之一. 在众多太阳能制氢技术中, 光电化学(PEC)水分解技术因其绿色可持续和较高的能量转换效率备受关注. 氮化钽(Ta3N5)因具有合适的能带结构和优异的光吸收能力, 成为PEC水分解领域极具发展前景的光阳极材料. 然而, Ta3N5电荷分离与传输效率不足以及表面水氧化动力学缓慢等因素, 限制了其实际应用.
本文对Ta3N5在PEC水分解领域应用的最新研究进展进行了系统的总结和梳理. 首先简要介绍了Ta3N5材料的研究历史与基本特性, 为理解其在PEC水分解中应用潜力奠定了基础. 随后, 分析了限制Ta3N5光阳极PEC水分解效率的主要因素, 包括载流子扩散长度有限、载流子复合、深能级缺陷、界面电荷传输阻碍及表面水氧化动力学缓慢等问题. 针对上述挑战, 总结了形貌工程、缺陷工程、界面工程及助催化剂表面改性等策略. 通过这些策略的协同作用, 显著提升了Ta3N5光阳极的光吸收能力、电荷分离效率和表面水氧化动力学, 从而提高了Ta3N5光阳极的能量转换效率. 此外, 表面自氧化是影响Ta3N5光阳极稳定性的主要问题. 进一步讨论了在Ta3N5光阳极表面引入保护层, 它们能够有效隔离H2O和活性氧与Ta3N5的直接接触, 有效缓解光腐蚀并提高光阳极的稳定性. 此外, 也综述了以Ta3N5光阳极为核心元件的无偏压辅助全解水串联电池的最新研究进展. 最后, 展望了Ta3N5光阳极未来的发展方向, 提出通过减少其内部缺陷、优化界面电荷传输路径、提高表面助催化剂活性等手段, 提升Ta3N5光阳极的电荷转移效率并降低其起始电位. 同时, 强调了利用先进的原位分析技术对Ta3N5光阳极/电解质界面进行表征及其性能衰减机制的深入研究, 并建议采用自修复策略提升Ta3N5光阳极的稳定性. 此外, 通过第一性原理计算深入理解了Ta3N5光阳极的内在物理与化学特性, 为设计高效率、稳定性的Ta3N5光阳极提供关键理论依据. 未来的研究可以探索将Ta3N5光阳极与热催化和酶催化等领域相结合, 以进一步推动太阳能驱动的水分解技术的发展.
综上所述, 本文系统地总结了Ta3N5在PEC水分解中的挑战与应对策略, 并展望了其未来发展方向. 深入研究Ta3N5光阳极的活性、稳定性与催化机理, 为高效稳定光电极的设计与开发提供了宝贵的理论指导与技术支持, 对设计实现高性能PEC全解水系统至关重要, 为推动PEC水分解制氢技术的实用化提供参考.

关键词: 光电化学水分解, 氮化钽, 光吸收效率, 电荷分离和传输效率, 表面反应速率, 稳定性

Abstract:

Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises. Among various methods, photoelectrochemical (PEC) water splitting stands out as a promising approach for direct solar-driven hydrogen production. Enhancing the efficiency and stability of photoelectrodes is a key focus in PEC water-splitting research. Tantalum nitride (Ta3N5), with its suitable band gap and band-edge positions for PEC water splitting, has emerged as a highly promising photoanode material. This review begins by introducing the history and fundamental characteristics of Ta3N5, emphasizing both its advantages and challenges. It then explores methods to improve light absorption efficiency, charge separation and transfer efficiency, surface reaction rate, and the stability of Ta3N5 photoanodes. Additionally, the review discusses the progress of research on tandem PEC cells incorporating Ta3N5 photoanodes. Finally, it looks ahead to future research directions for Ta3N5 photoanodes. The strategic approach outlined in this review can also be applied to other photoelectrode materials, providing guidance for their development.

Key words: Photoelectrochemical water splitting, Tantalum nitride, Light absorption efficiency, Charge separation and transfer efficiency, Surface reaction rate, Stability