催化学报 ›› 2025, Vol. 72: 143-153.DOI: 10.1016/S1872-2067(24)60270-6

• 论文 • 上一篇    下一篇

Bi2O2CO3纳米片晶面工程增强光催化臭氧化: 揭示臭氧吸附与电子转移机制

杨洋a, 杨洲a, 赖志明a, 阳灿a, 侯乙东a,*(), 陶慧琳b,*(), 张金水a,*(), 付贤智a   

  1. a福州大学化学学院, 能源与环境光催化国家重点实验室, 福建福州 350108
    b上饶师范学院化学与环境科学学院, 江西上饶 334001
  • 收稿日期:2024-11-28 接受日期:2025-02-04 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: ydhou@fzu.edu.cn (侯乙东),307183@sur.edu.cn (陶慧琳),jinshui.zhang@fzu.edu.cn (张金水).
  • 基金资助:
    国家自然科学基金(22072021);国家自然科学基金(22372036);国家自然科学基金(U21A20326);国家重点研发计划(2018YFA0209301);江西省教育厅科技研究项目(GJJ2201830);111项目(D16008)

Crystal facet engineering of Bi2O2CO3 nanosheets to enhance photocatalytic ozonation: Unraveling ozone adsorption and electron transfer mechanism

Yang Yanga, Zhou Yanga, Zhiming Laia, Can Yanga, Yidong Houa,*(), Huilin Taob,*(), Jinshui Zhanga,*(), Masakazu Anpoa, Xianzhi Fua   

  1. aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
    bSchool of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, Jiangxi, China
  • Received:2024-11-28 Accepted:2025-02-04 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: ydhou@fzu.edu.cn (Y. Hou), 307183@sur.edu.cn (H. Tao), jinshui.zhang@fzu.edu.cn (J. Zhang).
  • Supported by:
    National Natural Science Foundation of China(22072021);National Natural Science Foundation of China(22372036);National Natural Science Foundation of China(U21A20326);National Key R&D Program of China(2018YFA0209301);Jiangxi Provincial Education Department of Science and Technology Research Project(GJJ2201830);111 Project(D16008)

摘要:

光催化臭氧化技术作为一种新兴的高级氧化工艺, 相较于传统臭氧化技术, 展现出显著提升的氧化效能与环境治理潜力. 光催化臭氧化技术的创新之处在于将光催化与臭氧化进行耦合, 通过光生载流子(e-h+)驱动臭氧活化, 生成羟基自由基(•OH)和超氧自由基(•O2-)等高活性氧物种, 形成多路径氧化网络, 实现污染物的快速降解与深度矿化. 相关研究表明, 该技术可显著降低臭氧投加量并有效控制残留臭氧浓度, 兼具经济性与环境友好性. 然而, 光生电子参与的臭氧还原过程涉及吸附-解离-自由基级联反应等诸多复杂步骤, 其在分子层面的作用机制仍有待进一步明确, 这已然成为制约该技术优化的关键科学难题.

针对光催化臭氧化反应中臭氧活化机制的复杂性, 本文采用晶面工程策略, 深入探究并阐明了催化剂表面结构对臭氧吸附与活化行为所起到的决定性影响. 以层状Bi2O2CO3(BOC)为模型催化剂, 研究发现{110}晶面与{001}晶面凭借差异化的原子排布, 能够调控臭氧吸附特性与反应路径. BOC-{110}吸附臭氧能力强, 可直接解离O3为表面原子氧(*O)与氧气(O2), 主导表面直接氧化路径; 而BOC-{001}则具有适中的O3吸附能力, 有利于光生电子向O3转移, 形成•O3-中间体, 经质子化作用进一步生成•OH与O2, 主导自由基间接氧化路径. 原位光谱表征证实了这种晶面依赖的臭氧活化差异: 红外光谱监测到吸附在BOC-{001}表面上臭氧(*O3)在光照条件下被迅速消耗; 拉曼光谱则观察到BOC-{110}表面上*O的累积. 此外, 晶面工程还能调控光催化剂的内建电场, 暴露{001}晶面促进激子的解离以及载流子的分离, 进一步加速了光生电子活化臭氧的动力学过程, 产生更多羟基自由基. 因此, BOC-{001}在光催化臭氧化过程中表现出优异的苯酚矿化率(85%), 明显优于BOC-{110}(53%), 并保持良好的循环稳定性.

综上, 晶面工程在光催化臭氧化体系中的创新性应用, 为高性能催化剂的构筑提供了全新的视角. 通过精准调控催化剂的暴露晶面与表面活性位点, 可实现臭氧吸附强度、光生载流子迁移路径及活性自由基定向生成动力学的多维度优化. 电荷分离效率与臭氧活化效率的同步提升, 成功突破了光催化体系中单电子活化臭氧动力学的速率限制, 进而有望实现难降解有机污染物的深度矿化.

关键词: 光催化臭氧化, 晶面工程, 吸附构型, 臭氧活化, Bi2O2CO3

Abstract:

Photocatalytic ozonation holds promise for advanced water purification, yet its development has been hindered by a limited understanding of ozone activation mechanisms and its related photogenerated electron transfer dynamics. Herein, we employed in-situ DRIFTS and Raman spectroscopy to elucidate the distinct adsorption and activation behaviors of ozone (O3) on the {001} and {110} crystal facets of Bi2O2CO3 (BOC) nanosheets. BOC-{001} demonstrates superior photocatalytic ozonation performance, with 85% phenol mineralization and excellent durability, significantly outperforming the 53% mineralization rate of BOC-{110}. This enhanced activity is attributed to non-dissociative ozone adsorption and favorable adsorption energy over {001} facet, which facilitate the one-electron O3 reduction pathway. Furthermore, crystal facet engineering strengthens the built-in electric field, promoting exciton dissociation and the generation of localized charge carriers. The synergistic effects of optimized electron availability and ozone adsorption significantly boost the production of reactive oxygen species. These findings provide a deeper understanding of the critical roles of O3 adsorption and electron transfer in radical generation, which could provide some guidance for the strategic development of highly effective photocatalytic ozonation catalysts.

Key words: Photocatalytic ozonation, Crystal facets, Adsorption configuration, O3 activation, Bi2O2CO3