催化学报 ›› 2025, Vol. 75: 73-83.DOI: 10.1016/S1872-2067(25)64715-2

• 论文 • 上一篇    下一篇

硒掺杂策略调控Fe-N-C电催化剂的传质过程与电子结构及其在质子交换膜燃料电池中的应用

林旭a,1, 李丹阳a,1, 黄世清a,1, 孙盼盼a, 黄燕a, 王世涛a, 郑黎荣b,*(), 曹达鹏a,*()   

  1. a北京化工大学, 有机无机复合材料全国重点实验室, 北京 100029
    b中国科学院高能物理研究所, 北京同步辐射装置, 北京 100049
  • 收稿日期:2025-02-05 接受日期:2025-03-24 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: zhenglr@ihep.ac.cn (郑黎荣), caodp@buct.edu.cn (曹达鹏).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2019YFA0210300);国家自然科学基金(22372006)

Se-doping strategy regulating mass transfer and electronic structure of Fe-N-C electrocatalysts for proton exchange membrane fuel cells

Lin Xua,1, Li Danyanga,1, Huang Shiqinga,1, Sun Panpana, Huang Yana, Wang Shitaoa, Zheng Lirongb,*(), Cao Dapenga,*()   

  1. aState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
    bBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-02-05 Accepted:2025-03-24 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: zhenglr@ihep.ac.cn (L. Zheng), caodp@buct.edu.cn (D. Cao).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key Research and Development Project from MOST(2019YFA0210300);National Natural Science Foundation of China(22372006)

摘要:

化石燃料的快速枯竭加速了可再生清洁能源相关新型技术的发展. 质子交换膜燃料电池(PEMFCs)作为极具前景的氢能转换装置, 具有能量转换效率高、清洁、零排放等特点. 然而, 其阴极发生的氧还原反应(ORR)仍严重依赖铂基贵金属电催化剂. 铂金属的稀缺性和高昂成本严重制约了这种技术的大规模发展和可持续应用, 因此开发高性能、长寿命的非铂基ORR催化剂对PEMFC技术的发展具有重大意义. 过渡金属铁碳氮催化剂(Fe-N-C)成为最有希望替代铂基催化剂的一类材料.

硒(Se)作为半金属元素, 兼具金属和非金属元素特性, 这意味着Se既能像金属元素一样优化Fe-N-C活性位点的电子结构, 又可以像非金属元素(O, S和P等)一样调控碳载体的性能. 而且, 氧化硒(SeO2)可以作为造孔剂在碳载体上构筑多级孔结构, 进而加快ORR过程中三相界面中的物质传输. 因此, 本文设计了一种新型Se掺杂FeN4的多级孔结构ORR电催化剂(FeN4/SeC2). 通过拉曼光谱、比表面积和孔径分布分析, 证实了Se掺杂后的碳载体具有更大的比表面积和更多的多分级孔结构, 而X射线光电子能谱和同步辐射的表征进一步证实Se和Fe之间发生了电子转移. 在酸性条件下, FeN4/SeC2催化剂的半波电位比Fe-NC催化剂的半波电位提高40 mV, 与商业Pt/C催化剂相当. 而且, FeN4/SeC2催化剂在30000圈循环测试前后的半波电位仅衰减了27 mV, 稳定性明显好于Fe-NC催化剂(衰减了80 mV). 以该催化剂组装的PEMFC膜电极在200 kPa下功率密度可达1.20 W cm-2, 也明显高于Fe-NC催化剂组装的膜电极的性能(0.80 W cm-2), 并在0.67 V的恒电压测试中稳定运行了150小时. 这些结果表明所制备的FeN4/SeC2催化剂不仅在三电极体系中具有十分优异的活性和稳定性, 而且在膜电极测试中也展现出高的活性和稳定性. 此外, 膜电极中的极限电流法和不同温度下的阿伦尼乌斯曲线拟合结果, 证实了Se掺杂有助于离聚物和活性位点的充分浸润, 从而提升O2在三相界面中的传递效率, 并加快界面电荷转移. 密度泛函理论计算进一步阐明, SeC2与FeN4-OH物种间的协同催化作用可显著降低ORR决速步的能垒, 因此可有效提升FeN4活性位点的ORR催化活性.

综上, 本研究提出的Se掺杂策略不仅能诱导缺陷/介孔的形成、从而强化ORR催化过程中的三相界面传质, 而且也能通过SeC2与FeN4-OH的协同作用来提升ORR催化活性和稳定性, 为加速研发高性能PEMFCs阴极催化剂提供了有用的参考. 关键词: 硒掺杂策略; 协同催化; 加强传质; 氧还原; 质子交换膜燃料电池

Abstract:

The limited activity of atomically-dispersed M-N-C electrocatalysts severely restricts their applicability in the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFC). Herein, we design and synthesize Se-doped Fe-N-C hierarchical porous electrocatalyst (FeN4/SeC2) by optimizing carbon structure and FeN4 coordination environment. The FeN4/SeC2 electrocatalyst exhibits outstanding ORR activity in 0.1 mol L-1 HClO4, and the resulting PEMFC presents a peak power density of 1.20 W cm-2 in H2-O2 condition at a back pressure of 200 kPa, ranking in the top levels among most reported non-precious metal catalyst-based fuel cells. The lower O2 transfer resistance of FeN4/SeC2-based membrane electrode assembly than FeN4-based one means faster O2 transport in triple-phase boundary (TPB), and Density functional theory calculation further reveals that the synergistic catalysis between porous SeC2 and FeN4-OH species can efficiently lower the energy barriers for the rate-determining step of the ORR. In short, the outstanding performance of FeN4/SeC2 in PEMFC is ascribed to the Se-doping, which introduces more defects and larger mesoporosity and therefore facilitates ionomer infiltration and O2 transfer and charge transfer in TPB. The effective strategy of enhancing mass and charge transfers in TPB is anticipated to be applicable in the construction of highly efficient ORR electrocatalysts.

Key words: Se-doping, Synergistic catalysis, Enhancing mass transfer, Oxygen reduction, Proton exchange membrane fuel cells