催化学报 ›› 2025, Vol. 76: 133-145.DOI: 10.1016/S1872-2067(25)64758-9

• 论文 • 上一篇    下一篇

自发极化增强的空心球Bi4Ti3O12促进高效压电光催化: 构效关系与降解机制

季碧铖a, 李希成a, 高帅b, 秦泽平b, 汪长征a,*(), 王强b,*(), 王崇臣a,*()   

  1. a北京建筑大学环境与能源工程学院, 建筑结构与环境修复功能材料北京市重点实验室, 北京 100044
    b首都师范大学初等教育学院, 微尺度功能材料实验室, 北京 100048
  • 收稿日期:2025-04-04 接受日期:2025-05-19 出版日期:2025-09-18 发布日期:2025-09-10
  • 通讯作者: 汪长征,王强,王崇臣
  • 基金资助:
    国家自然科学基金(52370025);国家自然科学基金(52372212);北京建筑大学研究生教育和教学质量改进项目(J2023016);北京建筑大学研究生创新项目(DG2023012);北京建筑大学研究生创新项目(PG2024073)

Polarization-enhanced piezo-photocatalysis over hollow-sphere Bi4Ti3O12: Structure-property relationship and degradation mechanism

Bicheng Jia, Xicheng Lia, Shuai Gaob, Zeping Qinb, Changzheng Wanga,*(), Qiang Wangb,*(), Chong-Chen Wanga,*()   

  1. aBeijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    bLaboratory for Micro-sized Functional Materials & College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
  • Received:2025-04-04 Accepted:2025-05-19 Online:2025-09-18 Published:2025-09-10
  • Contact: Changzheng Wang, Qiang Wang, Chong-Chen Wang
  • Supported by:
    National Natural Science Foundation of China(2370025);National Natural Science Foundation of China(52372212);BUCEA Postgraduate Education and Teaching Quality Improvement Project(J2023016);BUCEA Post Graduate Innovation Project(DG2023012);BUCEA Post Graduate Innovation Project(PG2024073)

摘要:

近年来, 随着四环素类抗生素(尤其是盐酸四环素, TCH)的过度使用和不当处置, 其环境残留问题日益严重, 已成为亟待解决的环境污染难题. 压电光催化技术因其利用压电半导体内部产生的极化场促进光生载流子分离, 提高电子、空穴与液相中活性氧物种(ROS)的作用效率, 从而实现有机污染物的高效降解, 正受到广泛的关注与研究. 同时, 由于TCH分子中多个官能团的存在, 在不同pH值条件下会呈现不同的去质子化状态, 从而改变其分子反应性及与ROS的相互作用机理. 因此, 设计结构合理的压电光催化剂并阐明多构型抗生素污染物的降解过程, 是有效解决抗生素环境污染问题的关键. Bi4Ti3O12作为一种由Bi2O2+阳离子和类钙钛矿阴离子基团组成的非对称半导体材料, 兼具光催化活性和压电响应特性, 其自发铁电极化特性还可通过电荷屏蔽效应产生额外的ROS, 从而提高催化降解性能.

本文采用水热法, 通过前驱体调控成功制备出自发极化增强的空心球形Bi4Ti3O12(BTOS)压电光催化剂. 与传统的片状(BTO)和实心球形(BTOC)结构相比, BTOS在形貌上呈现规则空心球形, 其结构有利于形成强烈的内部极化场并优化载流子传输路径, 进而提升了光生载流子的分离和迁移效率. 扫描电镜和透射电镜表征证实了BTOS具有独特的空心球结构, 电子顺磁共振、X射线光电子能谱等结果表明, BTOS表面Ti元素具有丰富的化学状态且氧空位浓度适中, 压电力显微镜、开尔文探针力显微镜及铁电分析测试表明, BTOS拥有最佳的自发极化与压电响应. 此外, 结合瞬态光电流、电化学阻抗谱、线性及循环伏安法、光致衰减开路电压等多种电化学方法与稳态及瞬态荧光寿命测试, 阐明了BTOS体相与界面的载流子行为特性, 揭示了空心结构与适中氧空位浓度协同作用下的载流子高效分离和定向传输机理. 性能实验结果表明, 在压电光催化降解TCH过程中, BTOS不仅暗吸附和催化效率突出, 其降解速率远超单一光催化或压电催化过程, 且在多种pH条件及共存离子干扰下依然具有稳定的催化性能. 同时, 本研究创新性地引入局部软度、超软度结合分子表面静电势, 深入揭示了TCH在不同去质子化状态下对单线态氧主导的反应过程的机理, 同时结合福井函数与高效液相色谱质谱联用确定了反应路径, 深入地阐明了去质子化的盐酸四环素的降解过程.

综上, 本文构建了一种具有优异压电光催化性能的自发极化增强的空心球Bi4Ti3O12材料, 并通过实验与理论分析系统揭示了其在不同去质子化状态TCH降解中的高效催化机理. 本结果将为高效压电光催化剂的开发及抗生素污染治理提供参考.

关键词: 压电光催化, 形貌调控, 自发极化, 去质子化盐酸四环素, 局部软度

Abstract:

Tetracycline hydrochloride (TCH) exists in various forms in aqueous solution due to pH changes, which not only alters the reactivity of TCH, but also affects the process of reactive oxygen species (ROS) attacking the molecule. Therefore, the rational design of piezo-photocatalytic materials coupled with a comprehensive understanding of the degradation mechanisms of various TCH species constitutes a critical approach to addressing tetracycline antibiotic contamination. In the design and preparation of piezo-photocatalysts, controlling the oxygen vacancy concentration is crucial as it governs the coupling efficiency between piezoelectric response and photocatalytic activity, as well as the strength of spontaneous polarization. Meanwhile, the morphology of the material is a key factor influencing the migration pathways of charge carriers. In this work, hollow spherical Bi4Ti3O12 was synthesized using an inorganic titanium source, demonstrating exceptional piezo-photocatalytic activity. The degradation rate was 1.57 and 5.29 times higher than that of traditional spherical and plate-like morphologies, with a rate constant of k = 0.127. In an innovative approach, density functional theory calculations of local softness and hyper-softness were employed to analyze the reactivity changes of TCH in its different deprotonated states toward reactive oxygen species. Combined with molecular electronegativity analysis, the factors influencing the degradation efficiency were identified. This study provides a solid foundation for developing efficient and environmentally friendly piezo-photocatalysts and offers new insights into the degradation mechanism of TCH.

Key words: Piezo-photocatalysis, Morphology regulation, Spontaneous polarization, Deprotonated tetracycline hydrochloride, Local softness