催化学报 ›› 2025, Vol. 78: 144-155.DOI: 10.1016/S1872-2067(25)64767-X
陈馨茹a,1, 金添a,1, 张弛a, 朱振宇a, 沈昕元a, 陈琦a, 王静b,*(), 许建和a, 郑高伟a,*(
)
收稿日期:
2025-04-23
接受日期:
2025-05-25
出版日期:
2025-11-18
发布日期:
2025-10-14
通讯作者:
*电子信箱: wang.jing4@zs-hospital.sh.cn (王静),
gaoweizheng@ecust.edu.cn (郑高伟).
作者简介:
1共同第一作者.
基金资助:
Xin-Ru Chena,1, Tian Jina,1, Chi Zhanga, Zhen-Yu Zhua, Xin-Yuan Shena, Qi Chena, Jing Wangb,*(), Jian-He Xua, Gao-Wei Zhenga,*(
)
Received:
2025-04-23
Accepted:
2025-05-25
Online:
2025-11-18
Published:
2025-10-14
Contact:
*E-mail: wang.jing4@zs-hospital.sh.cn (J. Wang), gaoweizheng@ecust.edu.cn (G.-W. Zheng).
About author:
1Contributed equally to this work.
Supported by:
摘要:
手性胺作为一类重要的手性中间体, 在医药、化工、农业等领域具有广泛应用价值. 其中, 手性2-芳基取代吡咯烷结构单元是众多药物分子的关键药效团. 以阿替卡仑(Aticaprant)为例, 该药物作为强效、高亲和力的选择性Kappa阿片受体拮抗剂, 在抑郁症、躁郁症及创伤后应激障碍等情绪相关疾病的治疗中展现出重要临床价值. 亚胺还原酶作为NAD(P)H依赖型氧化还原酶, 能够高效催化亚胺的不对称还原反应, 为手性胺化合物的合成提供绿色途径. 然而, 目前文献报道的高活力工程化亚胺还原酶催化剂(> 50 U mg‒1)仍较罕见. 本文通过定向进化成功获得一种催化活力显著提升的突变体, 并构建了原位树脂吸附反应体系, 有效缓解了底物及产物对酶的抑制效应, 最终实现了手性2-芳基吡咯烷的高效酶法合成.
本文以绿产色链霉菌(Streptomyces viridochromogene)来源的亚胺还原酶SvIRED为研究对象, 以2-(3,5-二甲基苯基)吡咯啉为模式底物, 通过半理性设计策略对其进行分子改造以提高催化性能. 研究聚焦于底物结合位点与辅酶结合口袋的关键区域, 经过多轮迭代饱和突变, 成功获得性能显著提升的突变体SvIREDM3. 该突变体的活力由初始的1.6 U mg‒1大幅提升至136.8 U mg‒1, 突破了亚胺还原酶活力100 U mg‒1的阈值, 为目前文献报道中比活力最高的亚胺还原酶. 研究还测定了野生型SvIRED及最优突变体SvIREDM3的底物谱, 结果显示, 相较于野生型SvIRED, 最优突变体SvIREDM3对25种2-取代吡咯啉的亚胺还原反应及16种醛胺底物的还原胺化反应均展现出更优异的催化效率. 此外, 研究还通过引入弱酸型阳离子交换树脂D152构建反应-分离耦合体系, 有效缓解了底物和产物对酶的抑制作用. 该优化体系成功实现了多种手性2-芳基取代吡咯烷的高效合成, 并完成了抗抑郁药物阿替卡仑(Aticaprant)关键手性中间体(S)-2-(3,5-二甲基苯基)吡咯烷的克级规模制备, 转化率达98.6%, 分离收率90%, 时空产率高达438 g L‒1 d‒1. 这些研究成果充分展现了工程化亚胺还原酶在手性2-芳基吡咯烷合成中的巨大应用前景.
综上, 本文成功开发了高催化活性的亚胺还原酶突变体, 构建了原位树脂吸附反应体系, 有效解决了高浓度底物和产物对酶的抑制问题, 成功实现了吡咯烷类化合物的绿色高效生物催化合成, 为酶催化过程强化提供了重要参考.
陈馨茹, 金添, 张弛, 朱振宇, 沈昕元, 陈琦, 王静, 许建和, 郑高伟. 高活性工程亚胺还原酶的创制及高效催化合成手性2-芳基吡咯烷[J]. 催化学报, 2025, 78: 144-155.
Xin-Ru Chen, Tian Jin, Chi Zhang, Zhen-Yu Zhu, Xin-Yuan Shen, Qi Chen, Jing Wang, Jian-He Xu, Gao-Wei Zheng. Engineering an imine reductase for enhanced activity and reduced substrate inhibition: Asymmetric synthesis of chiral 2-aryl pyrrolidines[J]. Chinese Journal of Catalysis, 2025, 78: 144-155.
Entry | Enzyme | Residue | Substrate loading (g L−1) | Conv. a (%) | ee b (%) | Specific activity c (U mg−1) | Fold improvement of activity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
214 | 221 | 137 | 130 | 131 | 135 | 217 | 97 | 40 | 73 | 127 | 126 | |||||||
1 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 1 | 97.6 | >99 (S) | 1.6 | 1.0 |
2 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 10 | 15.4 | >99 (S) | 1.6 | 1.0 |
3 | SvIREDM1 | L | R | V | D | I | A | V | L | T | T | I | A | 10 | 70.6 | >99 (S) | 3.5 | 2.2 |
4 | SvIREDM1-1 | L | R | I | D | I | A | V | L | T | T | I | A | 20 | 46.9 | >99 (S) | 5.2 | 3.3 |
5 | SvIREDM1-2 | L | R | I | W | I | A | V | L | T | T | I | A | 20 | 91.8 | >99 (S) | 7.4 | 4.6 |
6 | SvIREDM1-3 | L | R | I | W | L | A | V | L | T | T | I | A | 30 | 49.3 | >99 (S) | 8.3 | 5.2 |
7 | SvIREDM1-4 | L | R | I | W | L | R | V | L | T | T | I | A | 30 | 85.3 | >99 (S) | 9.8 | 6.1 |
8 | SvIREDM1-5 | L | R | I | W | L | R | L | L | T | T | I | A | 30 | 99.5 | >99 (S) | 7.8 | 4.9 |
9 | SvIREDM2 | L | R | I | W | L | R | L | Y | T | T | I | A | 50 | 64.8 | >99 (S) | 8.0 | 5.0 |
10 | SvIREDM2-1 | L | R | I | W | L | R | L | Y | R | T | I | A | 50 | 68.6 | >99 (S) | 12.9 | 8.1 |
11 | SvIREDM2-2 | L | R | I | W | L | R | L | Y | R | S | I | A | 50 | 74.7 | >99 (S) | 16.4 | 10.3 |
12 | SvIREDM2-3 | L | R | I | W | L | R | L | Y | R | S | P | A | 50 | 99.6 | >99 (S) | 76.8 | 48.0 |
13 | SvIREDM3 | L | R | I | W | L | R | L | Y | R | S | P | G | 50 | 99.5 | >99 (S) | 136.8 | 85.5 |
Table 1 Performance of the best mutants from different rounds of evolution.
Entry | Enzyme | Residue | Substrate loading (g L−1) | Conv. a (%) | ee b (%) | Specific activity c (U mg−1) | Fold improvement of activity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
214 | 221 | 137 | 130 | 131 | 135 | 217 | 97 | 40 | 73 | 127 | 126 | |||||||
1 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 1 | 97.6 | >99 (S) | 1.6 | 1.0 |
2 | SvIREDWT | M | Y | V | D | I | A | V | L | T | T | I | A | 10 | 15.4 | >99 (S) | 1.6 | 1.0 |
3 | SvIREDM1 | L | R | V | D | I | A | V | L | T | T | I | A | 10 | 70.6 | >99 (S) | 3.5 | 2.2 |
4 | SvIREDM1-1 | L | R | I | D | I | A | V | L | T | T | I | A | 20 | 46.9 | >99 (S) | 5.2 | 3.3 |
5 | SvIREDM1-2 | L | R | I | W | I | A | V | L | T | T | I | A | 20 | 91.8 | >99 (S) | 7.4 | 4.6 |
6 | SvIREDM1-3 | L | R | I | W | L | A | V | L | T | T | I | A | 30 | 49.3 | >99 (S) | 8.3 | 5.2 |
7 | SvIREDM1-4 | L | R | I | W | L | R | V | L | T | T | I | A | 30 | 85.3 | >99 (S) | 9.8 | 6.1 |
8 | SvIREDM1-5 | L | R | I | W | L | R | L | L | T | T | I | A | 30 | 99.5 | >99 (S) | 7.8 | 4.9 |
9 | SvIREDM2 | L | R | I | W | L | R | L | Y | T | T | I | A | 50 | 64.8 | >99 (S) | 8.0 | 5.0 |
10 | SvIREDM2-1 | L | R | I | W | L | R | L | Y | R | T | I | A | 50 | 68.6 | >99 (S) | 12.9 | 8.1 |
11 | SvIREDM2-2 | L | R | I | W | L | R | L | Y | R | S | I | A | 50 | 74.7 | >99 (S) | 16.4 | 10.3 |
12 | SvIREDM2-3 | L | R | I | W | L | R | L | Y | R | S | P | A | 50 | 99.6 | >99 (S) | 76.8 | 48.0 |
13 | SvIREDM3 | L | R | I | W | L | R | L | Y | R | S | P | G | 50 | 99.5 | >99 (S) | 136.8 | 85.5 |
Entry | Enzyme | Ki (mmol L−1) | Km (mmol L−1) | kcat (s−1) | kcat/Km (s−1 mL mol−1) | Tm b (°C) |
---|---|---|---|---|---|---|
1 | SvIREDWT | 2.14 ± 0.31 | 0.02 ± 0.00 | 1.04 ± 0.04 | 52.00 | 53.4 |
2 | SvIREDM1 | 1.25 ± 0.34 | 0.26 ± 0.06 | 3.97 ± 0.55 | 15.27 | 52.7 |
3 | SvIREDM2 | 8.89 ± 4.08 | 0.02 ± 0.00 | 4.10 ± 0.20 | 205.00 | 54.1 |
4 | SvIREDM3 | 7.22 ± 1.94 | 0.12 ± 0.01 | 98.33 ± 4.57 | 819.42 | 53.6 |
Table 2 Kinetic parameters and thermostability (Tm) of SvIRED and key mutants a.
Entry | Enzyme | Ki (mmol L−1) | Km (mmol L−1) | kcat (s−1) | kcat/Km (s−1 mL mol−1) | Tm b (°C) |
---|---|---|---|---|---|---|
1 | SvIREDWT | 2.14 ± 0.31 | 0.02 ± 0.00 | 1.04 ± 0.04 | 52.00 | 53.4 |
2 | SvIREDM1 | 1.25 ± 0.34 | 0.26 ± 0.06 | 3.97 ± 0.55 | 15.27 | 52.7 |
3 | SvIREDM2 | 8.89 ± 4.08 | 0.02 ± 0.00 | 4.10 ± 0.20 | 205.00 | 54.1 |
4 | SvIREDM3 | 7.22 ± 1.94 | 0.12 ± 0.01 | 98.33 ± 4.57 | 819.42 | 53.6 |
Fig. 2. Structural analysis of SvIREDWT and SvIREDM3. (A) Distribution of all mutated sites. (B) Interaction differences between mutated sites 40, 73, and NADPH in SvIREDWT (left) and SvIREDM3 (right). (C) Interaction differences between mutated sites 97 and Y140 in SvIREDWT (left) and SvIREDM3 (right). (D) Substrate binding mode analysis of 1a in SvIREDWT (left) and SvIREDM3 (right). Substrate 1a and NADPH are indicated using green and magenta sticks, respectively. Hydrogen bonds are indicated using broken lines. Mutated sites on A chain and B chain are coloured violet and yellow, respectively. The distance of hydride transfer is described as “d”. “d” is 5.7 ± 0.6 ? for SvIREDWT and 4.9 ± 0.6 ? for SvIREDM3 (average of three parallel simulations).
Fig. 3. Asymmetric reduction of 2-substituted pyrrolines catalysed by SvIREDWT and SvIREDM3. Reaction conditions were 100 mmol L-1 substrate, KPi buffer (100 mmol L-1, pH = 6.0), 1 mmol L-1 NADP+, 150 mmol L-1 glucose, 5% (v/v) DMSO, 1 mg mL?1 purified enzyme, 1.5 mg BmGDH lyophilised cell-free extract, 0.5 mL reaction volume in a 2 mL tube, 30 °C, and shaking at 1000 rpm for 24 h. Conversion was determined by GC-FID. n.a., not available; n.d., not detected. Specific activity was determined at 0.2 mmol L-1 2-substituted pyrrolines (2 mmol L-1 for 27a), 0.1 mmol L-1 NADPH, KPi buffer (100 mmol L-1, pH = 6.0) and 30 °C using purified enzyme. Absolute configurations were determined by circular dichroism (CD) spectroscopy. a Reactions were not conducted due to low and undetected activity.
Fig. 4. Reductive amination of aldehydes catalysed by SvIREDWT and SvIREDM3. Reaction conditions were 100 mmol L-1 1-4, 1 mol L-1 A-D (10 equiv.), KPi buffer (100 mmol L-1, pH = 7.0), 1 mmol L-1 NADP+, 150 mmol L-1 glucose, 5% (v/v) DMSO, 1 mg mL?1 purified enzyme, 1.5 mg BmGDH lyophilised cell-free extract, 0.5 mL reaction volume in a 2 mL tube, 30 °C, and shaking at 1000 rpm for 24 h. Conversion was determined by GC-FID. Specific activity was determined at 10?mmol L-1 1-4, 100 mmol L-1 A-D, 0.1?mmol L-1 NADPH, KPi buffer (100 mmol L-1, pH = 7.0) and 30 °C using purified enzyme.
Entry | Substrate loading (g L−1) | Substrate addition | Feeding mode | Titration | Resin | Time (h) | Conv. (%) | ee (%) |
---|---|---|---|---|---|---|---|---|
1 | 50 | batch | — | 2 mol L−1 HCl | — | 1 | 99.0 | >99 |
2 | 60 | batch | — | 2 mol L−1 HCl | — | 2 | 96.4 | >99 |
3[b] | 60 | batch | — | 2 mol L−1 HCl | — | 24 | 96.3 | >99 |
4 | 60 | fed-batch | 15/15/15/15 g L−1 in 2 h | 2 mol L−1 HCl | — | 3 | 99.1 | >99 |
5 | 80 | batch | — | 2 mol L−1 HCl | — | 2 | 45.7 | >99 |
6 | 80 | fed-batch | 20 g L−1 per 1.5 h | 2 mol L−1 HCl | — | 6 | 46.8 | >99 |
7 | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 6 | 75.4 | >99 |
8b | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 24 | 75.6 | >99 |
9 | 80 | batch | — | — | IRN150 | 6 | 94.1 | >99 |
10 | 80 | batch | — | — | HZ835 | 6 | 85.3 | >99 |
11 | 80 | batch | — | — | NKA-II | 6 | 95.2 | >99 |
12 | 80 | batch | — | — | D152 | 6 | 99.0 | >99 |
13 | 100 | batch | — | — | D152 | 6 | 98.7 | >99 |
Table 3 Process development for efficient synthesis of (S)-1b using SvIREDM3 a.
Entry | Substrate loading (g L−1) | Substrate addition | Feeding mode | Titration | Resin | Time (h) | Conv. (%) | ee (%) |
---|---|---|---|---|---|---|---|---|
1 | 50 | batch | — | 2 mol L−1 HCl | — | 1 | 99.0 | >99 |
2 | 60 | batch | — | 2 mol L−1 HCl | — | 2 | 96.4 | >99 |
3[b] | 60 | batch | — | 2 mol L−1 HCl | — | 24 | 96.3 | >99 |
4 | 60 | fed-batch | 15/15/15/15 g L−1 in 2 h | 2 mol L−1 HCl | — | 3 | 99.1 | >99 |
5 | 80 | batch | — | 2 mol L−1 HCl | — | 2 | 45.7 | >99 |
6 | 80 | fed-batch | 20 g L−1 per 1.5 h | 2 mol L−1 HCl | — | 6 | 46.8 | >99 |
7 | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 6 | 75.4 | >99 |
8b | 80 | fed-batch | 45/25/10 g L−1 in 3 h | 1 mol L−1 HCl/3 mol L−1 K2CO3 | — | 24 | 75.6 | >99 |
9 | 80 | batch | — | — | IRN150 | 6 | 94.1 | >99 |
10 | 80 | batch | — | — | HZ835 | 6 | 85.3 | >99 |
11 | 80 | batch | — | — | NKA-II | 6 | 95.2 | >99 |
12 | 80 | batch | — | — | D152 | 6 | 99.0 | >99 |
13 | 100 | batch | — | — | D152 | 6 | 98.7 | >99 |
Scheme 2. Preparative-scale synthesis of 2-aryl-substituted pyrrolidines using SvIREDM3 and resin D152. Reaction mixture (5 mL) containing 20 g L?1 SvIREDM3 wet cells, 50 g L?1 substrate (80 g L?1 for 4a), 1.5 eq. glucose, 50 mg BmGDH lyophilised cell-free extract, 1 mmol L?1 NADP+, 5% DMSO (v/v), 0.15 g mL?1 resin (dry mass), and KPi buffer (100 mmol L?1, pH = 6.0) was shaken at 30 °C for 20 h.
|
[1] | 王剑朋, 路光辉, 吴倩, 代建容, 李宁. 利用工程化亚胺还原酶实现生物基N-取代糠胺的规模化生产[J]. 催化学报, 2025, 76(9): 210-220. |
[2] | 徐泽菲, 冯进辉, 刘祥涛, 李倩, 刘卫东, 姚培圆, 吴洽庆, 朱敦明. 亚胺还原酶催化动态动力学拆分还原胺化合成双手性中心N-取代氨基酰胺和氨基酯[J]. 催化学报, 2025, 77(10): 144-152. |
[3] | 倪晔, 张蓓花, 孙志浩. 采用通透性处理的安大略假丝酵母全细胞高效合成 (R)-2-氯-1-(3-氯苯基)乙醇[J]. 催化学报, 2012, 33(4): 681-687. |
[4] | 宿宇宁, 倪晔, 王骏超, 徐志豪, 孙志浩. 不对称还原制备光学纯 (R)-2-羟基-4-苯基丁酸乙酯的双酶共表达重组菌的构建[J]. 催化学报, 2012, 33(10): 1650-1660. |
[5] | 王丹, 张强, 李旺, 戚南昌, 郭春晓, 杨志荣, 张杰. 酵母静息细胞催化丙酮酸乙酯不对称还原制 (S)-乳酸乙酯[J]. 催化学报, 2011, 32(6): 1035-1039. |
[6] | 娄文勇;郭 强;郁惠蕾;宗敏华. 近平滑假丝酵母细胞催化乙酰基三甲基硅烷不对称还原反应[J]. 催化学报, 2009, 30(12): 1276-1280. |
[7] | 倪宏亮;姚善泾. 呼吸缺陷型面包酵母催化β-羰基酯的不对称还原[J]. 催化学报, 2008, 29(6): 537-541. |
[8] | 张帆;倪晔;孙志浩;郑璞;林文清;朱坡;居年丰. 水/离子液体两相体系中出芽短梗霉催化4-氯-乙酰乙酸乙酯不对称还原合成(S)-4-氯-3-羟基-丁酸乙酯[J]. 催化学报, 2008, 29(6): 577-582. |
[9] | 王梦亮;胡锐;郭学林;闫甫昆;刘滇生. 光控光合菌生物催化苯乙酮不对称还原的反应机理[J]. 催化学报, 2008, 29(3): 233-237. |
[10] | 应小姣;姚善泾;关怡新. 高压CO2条件下粗状假丝酵母催化苯乙酮不对称还原合成α-苯乙醇[J]. 催化学报, 2006, 27(7): 631-635. |
[11] | 马小魁;王喆之 陈五岭. 酵母发酵液直接催化4-氯-乙酰乙酸乙酯不对称还原生成4-氯-3-羟基-丁酸乙酯[J]. 催化学报, 2006, 27(4): 314-318. |
[12] | 刘湘;方志杰;许建和. 酵母细胞催化芳香酮的不对称还原反应[J]. 催化学报, 2006, 27(1): 20-24. |
[13] | 于明安;朱晓冰;祁巍;赵领;魏郁梦. CTAB透性化酵母细胞生物催化合成(S)-(+)-3-羟基丁酸乙酯[J]. 催化学报, 2005, 26(7): 609-613. |
[14] | 敬科举;徐志南;林建平;岑沛霖. 重组大肠杆菌细胞不对称还原4-氯乙酰乙酸乙酯合成(R)-(+)-4-氯-3-羟基丁酸乙酯[J]. 催化学报, 2005, 26(11): 993-998. |
[15] | 杨忠华;姚善泾;赵珺. 活性酵母细胞不对称催化苯乙酮还原及树脂吸附对反应的促进作用[J]. 催化学报, 2005, 26(10): 895-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||