催化学报 ›› 2025, Vol. 77: 70-86.DOI: 10.1016/S1872-2067(25)64781-4

• 论文 • 上一篇    下一篇

CoMn2O4/CeTiOx催化剂在低温SCR条件下的硫酸化失活机制研究

罗宁a, 高凤雨a,*(), 王成志b, 易红宏a, 赵顺征a, 周远松a, 杜尚丰c, 唐晓龙a,*()   

  1. a北京科技大学能源与环境工程学院, 北京市工业污染物资源化处理重点实验室, 北京100083, 中国
    b河南省科学院化学研究所, 河南郑州450046, 中国
    c伯明翰大学化学工程学院, 伯明翰, 英国
  • 收稿日期:2025-04-29 接受日期:2025-06-09 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: ahnuhkgao@163.com (高凤雨),txiaolong@126.com (唐晓龙).
  • 基金资助:
    国家自然科学基金(U20A20130);中央高校基本科研业务费专项资金(FRF-EYIT-23-07);中国国家留学基金委员会资助;“小米青年学者”项目

Mechanistic insights into sulfation-induced deactivation of CoMn2O4/CeTiOx catalyst under low-temperature SCR conditions

Ning Luoa, Fengyu Gaoa,*(), Chengzhi Wangb, Honghong Yia, Shunzheng Zhaoa, Yuansong Zhoua, Shangfeng Duc, Xiaolong Tanga,*()   

  1. aBeijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    bHenan Academy of Sciences, Institute of Chemistry, Zhengzhou 450046, Henan, China
    cSchool of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
  • Received:2025-04-29 Accepted:2025-06-09 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: ahnuhkgao@163.com (F. Gao), txiaolong@126.com (X. Tang).
  • Supported by:
    National Natural Science Foundation of China(U20A20130);Fundamental Research Funds for the Central Universities(FRF-EYIT-23-07);The authors also thank the China Scholarship Council;“Xiaomi Young Scholars” project

摘要:

氮氧化物(NOx)是重要的大气污染物. 氨选择性催化还原(NH3-SCR)因其高效脱硝、低能耗等优点, 已成为固定源NOx治理的主流技术. 然而, 工业烟气中的水蒸气(H2O)和二氧化硫(SO2)极易引发催化剂中毒失活, 尤其在180 °C以下的低温条件下, 催化剂抗水抗硫能力不足已成为制约其长期稳定运行的核心瓶颈. 因此, 深入揭示低温NH3-SCR催化剂在H2O和SO2气氛下的硫酸化失活机理, 并开发新型高效稳定的催化材料, 对于推动绿色烟气治理技术的发展具有重要的科学意义与应用价值.

本研究以具备优异抗水抗硫性能的CoMn2O4/CeTiOx (CMCT)催化剂为对象, 在150 °C低温条件下开展了长时间催化稳定性测试, 探讨了NH3-SCR反应过程中水和硫导致的催化剂表面中毒机制及其对反应性能的影响. 根据不同反应阶段催化活性的变化, 对应采集催化剂样品进行对比分析. 采用热重分析(TG)、X射线光电子能谱(XPS)、拉曼光谱、傅里叶变换红外光谱(FTIR)及原位漫反射红外光谱(DRIFTS)等多种表征手段, 揭示了催化剂表面及硫酸盐物种的动态演变规律. 结果显示, 催化剂失活过程可分为三个阶段: “表面硫酸盐快速积累—部分转化为体相金属硫酸盐—去除水和硫后部分硫酸盐分解”. 其中, 体相金属硫酸盐的生成导致晶格扭曲和氧空位损失, 是不可逆失活的主要原因; 而表面硫酸盐(包括铵盐和表面配位金属硫酸盐)则主要引起可逆性活性损失, 可在去除H2O和SO2后实现部分活性恢复. 进一步研究发现, SO2对NO和NH3的吸附存在显著竞争作用. 然而, CMCT催化剂仍能维持较高活性, 主要归因于两方面: 其一, H2O的存在明显抑制了SO2的吸附, 有助于维持Brønsted酸位点及初期活性; 其二, CeTiOx载体能够抑制SO2在催化剂上的吸附, 并促进Eley-Rideal(E-R)反应路径的发生. 相较于Langmuir-Hinshelwood (L-H)路径, SO2中毒对E-R路径影响较小, 因此CMCT催化剂表现出更优的抗硫性能和反应稳定性.

综上, 本文阐明了低温SCR反应过程中催化剂表面硫酸盐的形成与转化规律, 分析了不同硫酸盐对催化剂中毒失活的影响机制, 并揭示了水和硫共存条件下催化剂活性维持的关键因素. 相关发现为催化剂的优化设计和复杂工况下的大气污染控制提供了理论基础.

关键词: 氨-选择性催化还原, CoMn2O4/CeTiOx, 抗水耐硫性能, 表面硫酸盐, 体相硫酸盐

Abstract:

The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNOx catalysts. This study investigated the sulfation mechanism of the CoMn2O4/CeTiOx (CMCT) catalyst during the selective catalytic reduction of NOx with NH3 under conditions containing H2O and SO2 at 150 °C. Employing a comprehensive suite of time-resolved analysis and characterization techniques, the evolution of sulfate species was systematically categorized into three stages: initial rapid surface sulfate accumulation, the transformation of surface sulfates to bulk metal sulfates, and partial sulfates decomposition after the removal of H2O and SO2. These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies, whereas surface sulfates (including ammonium sulfates and surface-coordinated metal sulfates) cause reversible performance loss through decomposition. Furthermore, the competitive adsorption of H2O and SO2 significantly influences the catalytic efficiency, with H2O suppressing SO2 adsorption while simultaneously enhancing the formation of Brönsted acid sites. This research underscores the critical role of sulfate dynamics on catalyst performance, revealing the enhanced SO2 resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway. Collectively, the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.

Key words: Selective catalytic reduction with NH3, CoMn2O4/CeTiOx, H2O and SO2 resistance, Surface sulfate, Bulk sulfate