催化学报 ›› 2025, Vol. 78: 252-264.DOI: 10.1016/S1872-2067(25)64799-1

• 论文 • 上一篇    下一篇

非补偿性Cu/N共掺杂协同石墨烯增强TiO2光催化双通道制H2O2

申倩倩a,b,*(), 董晨龙a,b, 冯世龙a,b, 张雪丽a,b, 李秋蓉a,b, 薛晋波a,b,*()   

  1. a太原理工大学, 新材料界面科学与工程教育部重点实验室, 山西太原 030024
    b太原理工大学材料科学与工程学院, 山西太原 030024
  • 收稿日期:2025-05-19 接受日期:2025-06-24 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: shenqianqian@tyut.edu.cn (申倩倩), xuejinbo@tyut.edu.cn (薛晋波).
  • 基金资助:
    国家自然科学基金(52472300);国家自然科学基金(62004137);山西省自然科学基金(20210302123102);中央引导地方科技发展资金(YDZJSX20231A020);山西浙大新材料与化工研究院项目(2022SX-TD002);山西省回国留学人员科技项目(2020-050);运城市科技计划项目(YCKJ-2023056)

The synergistic effect of non-compensated Cu/N co-doping and graphene enhances the dual-channel generation of H2O2 over TiO2 photocatalysts

Qianqian Shena,b,*(), Chenlong Donga,b, Shilong Fenga,b, Xueli Zhanga,b, Qiurong Lia,b, Jinbo Xuea,b,*()   

  1. aKey Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    bCollege of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2025-05-19 Accepted:2025-06-24 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: shenqianqian@tyut.edu.cn (Q. Shen), xuejinbo@tyut.edu.cn (J. Xue).
  • Supported by:
    National Natural Science Foundation of China(52472300);National Natural Science Foundation of China(62004137);Natural Science Foundation of Shanxi Province(20210302123102);Central Leading Science and Technology Development Foundation of Shanxi Province(YDZJSX20231A020);Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD002);Shanxi Scholarship Council of China(2020-050);Science and Technology Program of Yuncheng City(YCKJ-2023056)

摘要:

过氧化氢(H2O2)是世界上最重要的100种化学品之一, 自1818年由Thenard首次合成以来, 已受到越来越多的关注, 并被广泛应用于有机合成、污水处理、医疗消毒和漂白等领域. 近年来, 以水(H2O)和氧气(O2)为原料、以太阳光为能源的光催化合成H2O2路线, 因其绿色、经济、安全和可持续发展等优点而备受关注. 光催化生产H2O2可通过水氧化反应(WOR)、氧还原反应(ORR)或双通道途径实现. 双通道途径整合了ORR和WOR反应的优势, 无需牺牲剂即可将O2和H2O转化为H2O2, 从而实现更高的原子利用率和能量转换效率, 从而提高H2O2的生产效率. 由此可见, 双通道途径是光催化生产H2O2的理想途径.

本研究针对TiO2光催化合成H2O2过程中存在的光吸收范围窄、载流子复合率高以及反应效率低等关键科学问题, 创新性地设计了一种石墨烯修饰的非补偿Cu/N共掺杂TiO2 (Cu-N-TiO2/rGO)光催化剂. 该催化剂通过独特的双通道反应途径, 实现了在温和条件下高效合成H2O2的目标. 在催化剂设计方面, 本研究采用了共掺杂策略, 将Cu2+和N3−共同掺入TiO2晶格. 通过系统的表征和理论计算发现, Cu/N共掺杂的协同作用实现了对TiO2导带和价带位置的精确调控, 使其带隙从原始TiO2的3.25 eV显著降至2.88 eV, 在满足氧化还原电位要求的同时, 大幅度提高了对太阳光的转化效率. 此外, Cu掺杂通过促进氧空位的形成, 减少了光生电荷重组中心Ti3+的形成; 非补偿性的N掺杂有效地增加了Cu2+在TiO2晶格中的溶解度, 增强了羟基自由基中间产物的吸附, 为后续生成H2O2创造了条件. 在催化剂结构优化方面, 引入了石墨烯作为电子传输介质. 石墨烯与Cu-N-TiO2形成了紧密的界面接触, 构建了高效的电子传输通道. 该独特的结构设计实现了氧化还原反应位点的空间分离: 光生电子通过石墨烯快速传输至ORR活性位点, 而空穴则保留在WOR活性位点. 飞秒瞬态吸收光谱测试表明, Cu-N-TiO2/rGO的载流子寿命达到179.9 ps, 是原始TiO2 (32.1 ps)的5.6倍, 这为双通道反应的高效进行提供了动力学保障. 通过原位漫反射傅立叶变换红外光谱和密度泛函理论计算, 深入揭示了双通道反应机制. 研究表明, 该催化剂通过两条平行途径生成H2O2: ORR途径(贡献率为65.2%)遵循O2 → •O2 → H2O2的两步单电子还原过程; WOR途径(贡献率为34.8%)则通过H2O → •OH → H2O2的路径实现. 优化后的Cu-N-TiO2/rGO在模拟太阳光下的H2O2产率达到1266.7 µmol·L−1, 是原始TiO2的25.2倍.

综上, 本文提出的非补偿共掺杂策略和双通道反应机制为光催化合成H2O2提供了新思路. 未来, 通过进一步优化掺杂元素组合和界面工程, 有望实现更高的太阳能转化效率. 本工作不仅解决了能带结构调控与载流子分离效率的关键难题, 还为设计高效的光催化剂提供了理论指导.

关键词: 光催化合成H2O2, 双通道, 能带结构调控, Cu/N共掺杂

Abstract:

Modulating the electronic structure of a photocatalyst and constructing spatially separated redox sites are key strategies for achieving the photocatalytic dual-channel generation of H2O2. In this study, a graphene-modified non-compensated Cu/N-co-doped titanium dioxide (Cu-N-TiO2/rGO) photocatalyst was designed for the efficient synthesis of H2O2 via a dual-channel pathway. Precise modulation of the TiO2 conduction band position was achieved through the synergistic coupling of Cu 3d orbitals hybridized with Ti 3d orbitals and hybridization of N 2p orbitals with O 2p orbitals. This approach significantly improved the utilization of sunlight while satisfying the redox potential requirements. Cu doping not only promoted the formation of oxygen vacancies but also reduced the formation of Ti3+ ions, the photogenerated charge recombination centers. The non-compensated doping of N effectively increased the solubility of Cu2+ ions in the titanium dioxide lattice, enhanced the adsorption of hydroxyl radical intermediates, and created conditions for the subsequent hydroxyl radical combinations promoting the generation of H2O2. In addition, the introduction of highly conductive graphene improved the interfacial carrier separation efficiency while realizing the spatial separation of redox sites, creating conditions for dual-channel reactions. The experimental results showed that the H2O2 yield of Cu-N-TiO2/rGO under simulated sunlight reached 1266.7 µmol/L, which was 25.2 times higher than that of pristine TiO2. This study elucidated the synergistic mechanism of the energy band structure modulation and interfacial optimization, which provided a new idea for the design of dual-channel H2O2 production photocatalysts.

Key words: Photocatalytic production of H2O2, Dual channel, Modulation of energy band structure, Cu/N co-doping