催化学报 ›› 2025, Vol. 78: 202-214.DOI: 10.1016/S1872-2067(25)64803-0

• 论文 • 上一篇    下一篇

MOF包埋衍生策略缓释氧物种增强甲烷选择性氧化的活性与选择性: 基于瞬时原位红外的研究

李可欣a, 袁浩a, 杨祖保b, 胡准a,*()   

  1. a西安交通大学化工学院, 工业催化研究所, 陕西西安710049, 中国
    b密歇根大学化学工程系, 安娜堡48103, 美国
  • 收稿日期:2025-04-29 接受日期:2025-07-07 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: huzhun@mail.xjtu.edu.cn (胡准).

MOF encapsulation derived slow-release oxygen species to enhance the activity and selectivity of methane selective oxidation: A transient DRIFTs Study

Ke-Xin Lia, Hao Yuana, Ralph T. Yangb, Zhun Hua,*()   

  1. aInstitute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    bDepartment of Chemical Engineering, University of Michigan, Ann Arbor 48103, MI, USA
  • Received:2025-04-29 Accepted:2025-07-07 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: huzhun@mail.xjtu.edu.cn (Z. Hu).

摘要:

甲烷作为氢碳比最高的化石资源, 是生产大宗化学品和燃料的重要原料. 将甲烷选择性氧化为C1含氧化合物极具应用前景. 然而, 甲烷分子因结构对称、极化率低且C-H键能高, 其选择性氧化极具挑战. 同时, 氧化产物易被过度氧化为CO2, 导致目标产物选择性低. 通过光催化激发的电子空穴对提供额外的反应路径, 并精准调控氧物种浓度, 在提高催化活性与选择性方面展现出独特潜力. 金属有机框架材料(MOF)凭借其结构可调控的优势, 近年来被广泛用于光催化剂改性. 因此, 本文提出通过优化MOF结构精准控制氧物种浓度, 从而同步提升甲烷氧化物生成甲醇活性与选择性的研究思路.

本文围绕甲烷选择性氧化这一关键反应过程, 采用MIL-125 (Ti)为前驱体, 系统研究金纳米颗粒(Au NPs)在不同负载方式(表面负载: Au/TiO2与包埋: Au@TiO2)下, 光热催化剂结构与性能的调控机制. X射线衍射、扫描电镜、透射电镜和N2吸附-脱附表征结果显示, Au@TiO2的Au纳米颗粒均匀包埋于TiO2内部, 且具有更高的比表面积; Au/TiO2则存在明显的Au颗粒聚集现象. 性能评估显示, 0.5Au@TiO2在全光谱照射下表现出最高的CH3OH产率(32.5 μmol/(g·h))和选择性(> 80.6%), 远优于相同Au负载量的Au/TiO2 (7.7 μmol/(g·h), 31.6%). 电子顺磁共振和X射线光电子能谱进一步证实, Au@TiO2会形成更多的Au3+和氧空位(OV), 其中0.5Au@TiO2的含量最高. Au3+和OV有助于提升光生载流子分离效率, 因此0.5Au@TiO2在所有样品中表现出最优的电子结构调控能力. 反应条件下的原位漫反射红外光谱(DRIFTs)结果表明, •OH不仅可用于CH4的初步活化, 同时也是引发过氧化的主要活性物种, 而•OOH主要参与甲醇生成, 不涉及深度氧化. 在Au/TiO2中, •OH主要以非氢键吸附的游离态存在, 虽然能快速活化CH4生成甲醇, 但也极易诱发甲醇的过氧化(生成CO2). 而Au@TiO2对•OH以氢键形式吸附, 可有效的降低甲醇过氧化的几率. 切断CH4的原位DRIFTs证明, Au@TiO2中氢键吸附•OH可向非氢键吸附•OH进行转化, 这种缓释作用可以在不降低CH4活化速率的前提下, 有效的阻断甲醇的过氧化路径, 从而保证了活性与选择性的同步提升.

综上, 本文通过改变Au和TiO2的负载方式, 揭示了氢键吸附与缓释策略调控•OH迁移机制, 在保证高甲烷转化率的同时, 减少部分氧化产物的过氧化, 为构建高性能高值化甲烷光热选择氧化催化剂提供理论依据.

关键词: 甲烷选择性氧化, 金属有机框架衍生, 活性氧物种调制, 氢键吸附羟基

Abstract:

The methane selective oxidation was a "holy grail" reaction. However, peroxidation and low selectivity limited the application. Herein, we combined three Au contents with TiO2 in both encapsulation (xAu@TiO2) and surface-loaded (xAu/TiO2) ways by MOF derivation strategy, reported a catalyst 0.5Au@TiO2 exhibited a CH3OH yield of 32.5 μmol·g-1·h-1 and a CH3OH selectivity of 80.6% under catalytic conditions of only CH4, O2, and H2O. Mechanically speaking, the catalytic activity was controlled by both electron-hole separation efficiency and core-shell structure. The interfacial contact between Au nanoparticles and TiO2 in xAu@TiO2 and xAu/TiO2 induced the formation of oxygen vacancies, with 0.5 Au content showing the highest oxygen vacancy concentration. At the same Au content, xAu@TiO2 generated more oxygen vacancies than xAu/TiO2. The oxygen vacancy acted as an effective electron cold trap, which enhanced the photogenerated carrier separation efficiency and thereby improved the catalytic activity. In-situ DRIFTs revealed that the isolated OH (non-hydrogen bond adsorption) were key species for the methane selective oxidation, playing a role in the activation of CH4 to *CH3. However, an overabundance of isolated OH led to severe overoxidation. Fortunately, the core-shell structure over xAu@TiO2 provided a slow-release environment for isolated OH through the intermediate state of *OH (hydrogen bond adsorption) to balance the formation rate and consumption rate of isolated OH, doubling the methanol yield and increasing the > 29% selectivity. These results showed a new strategy for the control of the overoxidation rate via a strategy of MOF encapsulation followed by pyrolytic derivation for methane selective oxidation.

Key words: Methane selective oxidation, Metal-organic framework derived, Reactive oxygen species modulation, Hydrogen bonded adsoprotion, hydroxyl groups