催化学报 ›› 2026, Vol. 80: 146-158.DOI: 10.1016/S1872-2067(25)64857-1

• 论文 • 上一篇    下一篇

Co3(PO4)2/CoSx/Cd0.5Zn0.5S孪晶S型异质结光催化转化H2S耦合产氢

马心怡a, 肖子翼a, 胡雪晴a, 胡浩斌b,*(), 薛文华c,*(), 刘恩周a,*()   

  1. a西北大学化工学院, 西安特种能源材料重点实验室, 陕西西安 710069
    b陇东学院陇东油气资源高效利用重点实验室, 甘肃庆阳 745000
    c东莞理工学院生态环境工程技术研发中心, 广东东莞 523808
  • 收稿日期:2025-07-16 接受日期:2025-08-25 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 胡浩斌,薛文华,刘恩周
  • 基金资助:
    中央引导地方科技发展专项(24ZYQM001);国家自然科学基金(22378326);陕西省自然科学基础研究计划项目(2023-JC-YB-115)

Synergetic photocatalytic H2 evolution and H2S conversion over S-scheme Co3(PO4)2/CoSx/twinned-Cd0.5Zn0.5S

Xinyi Maa, Ziyi Xiaoa, Xueqing Hua, Haobin Hub,*(), Wenhua Xuec,*(), Enzhou Liua,*()   

  1. aSchool of Chemical Engineering/Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an 710069, Shaanxi, China
    bGansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Longdong University, Qingyang 745000, Gansu, China
    cResearch Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
  • Received:2025-07-16 Accepted:2025-08-25 Online:2026-01-18 Published:2026-01-05
  • Contact: Haobin Hu, Wenhua Xue, Enzhou Liu
  • Supported by:
    Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(24ZYQM001);National Natural Science Foundation of China(22378326);Natural Science Basic Research Program of Shaanxi Province(2023-JC-YB-115)

摘要:

硫化氢(H2S)是一种具有剧毒且强腐蚀性气体, 广泛存在于煤化工、石油化工等行业. 目前, 工业上主要采用克劳斯工艺将H2S转化为单质S和H2O, 该工艺流程长、反应温度高、转化不彻底, 且不适合小规模、低浓度H2S净化, H2S资源化利用程度低. 因此, 开发温和条件下的高效、低能耗脱硫新技术具有重要实际意义. 近年来, 光催化脱硫技术因其能够利用太阳能同步实现分解H2S制氢和硫转化受到广泛关注.

鉴于H2S在碱性溶液中具有快速吸收特性, 采用合适的碱性吸收剂捕获H2S, 能够生成S2−/HS作为电子供体, 从而加快反应动力学, 显示出良好的实际应用潜力. 然而, 液相S2−/HS体系产氢时, S2−/HS氧化生成的黄色多硫离子(如S22−)会阻碍催化剂对光的吸收, 导致体系光能利用效率降低. 研究表明, 引入NaH2PO2等还原性物质可有效抑制S2²的生成, 然而NaH2PO2体系中硫离子转化路径尚不明确. 本研究将孪晶Cd0.5Zn0.5S(T-CZS)同质结作为平台催化剂, 以Na2S溶液模拟H2S碱性吸收液, 通过引入NaH2PO2调控S2−/HS的转化路径, 实现光催化转化H2S耦合产氢. 研究发现, 在0.1 mol·L−1 Na2S/3 mol·L−1 NaH2PO2反应液中, T-CZS的产氢速率达到233.9 mmol∙g−1∙h−1, 相比单独使用0.1 mol·L−1 Na2S溶液提升了5.5倍. 分析结果表明, H2PO2通过两步串联氧化反应额外提供四个电子促进H+还原, 提高了界面电子密度, 加速了产氢动力学; 同时清除了黄色S22−离子, 缓解了其对光的竞争吸收. 进一步通过构建S型同质异质结, 并结合“电子桥”策略, 设计制备了Co3(PO4)2/CoSx/T-CZS复合催化剂, 其充分利用S型异质结的强氧化还原能力与“电子桥”的高效电荷传输特性, 使产氢速率提升至292.1 mmol∙g−1∙h−1, 并且酸化反应溶液得到了单质S. 为验证上述体系的实际应用潜力, 搭建了H2S制备与吸收实验装置. 结果表明, 该催化体系具有良好的稳定性, 可实现高效产氢(283.3 mmol∙g−1∙h−1)以及单质S的回收.

综上, 本研究成功设计并合成了具有S型同质异质结和“电子桥”结构的Co3(PO4)2/CoSx/T-CZS催化剂, 实现了光催化高效转化H2S耦合产氢, 揭示了H2PO2在S2−/HS溶液中增强产氢的关键作用, 为光催化处理H2S提供了新思路和实验基础. 关键词: 光催化剂; 脱硫; S2−/HS转化; 孪晶Cd0.5Zn0.5S; 同质异质结

Abstract:

Developing sustainable, low-cost H2S conversion technologies holds significant importance for the coal chemical and petrochemical industries. Herein, twinned Cd0.5Zn0.5S (T-CZS) homojunctions serve as model photocatalysts, with a Na2S/NaH2PO2 solution simulating H2S absorption to regulate S2−/HS transformation pathways for concurrent efficient H2 evolution and desulfurization. Notably, at 3 mol∙L−1 NaH2PO2 concentration, the H2 evolution rate (rH2) over T-CZS reaches 233.9 mmol∙g−1∙h−1—representing a 5.5-fold enhancement versus 0.1 mol∙L−1 Na2S alone. Mechanistic studies reveal that the two-step oxidation of H2PO2 delivers four electrons for H+ reduction while simultaneously scavenging deleterious S22− species. This dual function mitigates light-absorption competition, enhances interfacial electron density, and accelerates H2-evolution kinetics. Further, Co3(PO4)2/CoSx loading boosts H2 production to 292.1 mmol∙g−1∙h−1, primarily ascribed to suppressed bulk/interface charge recombination. Crucially, acidification of post-reaction solutions yields pure elemental sulfur (S) as a yellow solid. Practical viability was validated using H2S preparation and absorption system, confirming robust catalyst performance and system efficacy for integrated high-efficiency H2 production and S recovery. The critical role and significant potential of H2PO2 in enhancing H2 evolution in S2−/HS solutions were emphasized, offering potential strategies for efficient photocatalytic conversion of S2−/HS. This work establishes a new paradigm for green, economical H2S valorization.

Key words: Photocatalyst, Desulfurization, Conversion of S2?/HS?, Twinned-Cd0.5Zn0.5S, Homo-heterojunction