催化学报 ›› 2021, Vol. 42 ›› Issue (9): 1500-1508.DOI: 10.1016/S1872-2067(20)63754-8

• 论文 • 上一篇    下一篇

CuPd催化剂调节中间反应能垒提高电催化CO2生成二碳产物的选择性

朱莉a, 林翌阳a, 刘康a, Emiliano Cortésb, 李红梅a, 胡俊华c, Akira Yamaguchid, 刘小良a,#(), Masahiro Miyauchid,$(), 傅俊伟a,(), 刘敏a,*()   

  1. a中南大学物理与电子学院, 湖南长沙410083, 中国
    b慕尼黑大学物理学院, 慕尼黑, 德国
    c郑州大学材料科学与工程学院, 河南郑州450052, 中国
    d东京工业大学材料与化工技术学院, 材料与科学工程系, 东京, 日本
  • 收稿日期:2020-11-18 接受日期:2020-12-09 出版日期:2021-09-18 发布日期:2021-05-16
  • 通讯作者: 刘小良,Masahiro Miyauchi,傅俊伟,刘敏
  • 基金资助:
    国家自然科学基金(21872174);国家自然科学基金(22002189);国家自然科学基金(51673217);国家自然科学基金(U1932148);国家科技部重点研发国际间合作项目(2017YFE0127800);国家科技部重点研发国际间合作项目(2018YFE0203402);湖南省科技计划项目(2017XK2026);湖南省自然科学基金(2020JJ2041);湖南省自然科学基金(2020JJ5691);湖南省科技计划项目(2017TP1001);深圳科技创新项目(JCYJ20180307151313532)

Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products

Li Zhua, Yiyang Lina, Kang Liua, Emiliano Cortésb, Hongmei Lia, Junhua Huc, Akira Yamaguchid, Xiaoliang Liua,#(), Masahiro Miyauchid,$(), Junwei Fua,(), Min Liua,*()   

  1. aShenzhen Research Institute, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
    bChair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
    cSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, Henan, China
    dDepartment of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
  • Received:2020-11-18 Accepted:2020-12-09 Online:2021-09-18 Published:2021-05-16
  • Contact: Xiaoliang Liu,Masahiro Miyauchi,Junwei Fu,Min Liu
  • About author: E-mail: fujunwei@csu.edu.cn
    $ E-mail: mmiyauchi@ceram.titech.ac.jp;
    # E-mail: xl_liu@csu.edu.cn;
    * Tel: +86-13787082527; E-mail: minliu@csu.edu.cn;
  • Supported by:
    Natural Science Foundation of China(21872174);Natural Science Foundation of China(22002189);Natural Science Foundation of China(51673217);Natural Science Foundation of China(U1932148);International Science and Technology Cooperation Program(2017YFE0127800);International Science and Technology Cooperation Program(2018YFE0203402);Hunan Provincial Science and Technology Program(2017XK2026);Hunan Provincial Natural Science Foundation(2020JJ2041);Hunan Provincial Natural Science Foundation(2020JJ5691);Hunan Provincial Science and Technology Plan Project(2017TP1001);Shenzhen Science and Technology Innovation Project(JCYJ20180307151313532)

摘要:

过度的碳排放已造成了严重的全球环境问题, 电催化CO2还原是一种利用间歇性过剩电能将CO2转化为有价值的化学物质的有效策略. 在多种CO2还原产物中, 二碳(C2)产物(如乙烯、乙醇)因其比一碳产物(如甲酸、甲烷、甲醇)具有更高的能量密度而备受关注. Cu是唯一能用电化学方法将CO2转化为多碳产物的单金属催化剂. 如何提高Cu基催化剂上CO2还原为C2产物的效率已引起了极大关注. 电催化还原CO2生成C2产物有两个重要步骤: 一是参与碳碳偶联反应的CO*中间体的量(*代表中间体吸附在基底表面), 二是碳碳偶联步骤的能垒. 对于Cu单金属催化剂, 虽然其表面碳碳偶联步骤的能垒相对较低, 但是Cu对CO2的吸附能力和CO2*加氢能力并不高, 导致在Cu表面不能生成足量的CO*中间体参与碳碳偶联反应, 因而对C2产物的选择性和活性并不理想. 与Cu单金属催化剂相反, 在Pd单金属催化剂表面, CO*中间体的形成具有超快的反应动力学, 但是CO*易在Pd表面中毒且后续碳碳偶联步骤的能垒极高, 使其表面不能生成C2产物. 为了充分发挥Cu(碳碳偶联步骤能垒较低)和Pd(CO*形成具有超快反应动力学)的双重优势, 本文构建了一种紧密的CuPd(100)界面, 以调节中间反应能垒, 从而提高C2产率.
密度泛函理论(DFT)计算表明, CuPd(100)界面增强了CO2的吸附, 且降低了CO2*加氢步骤的能垒, 从而能够催化生成更多的CO*中间体参与碳碳偶联反应. 且CuPd(100)界面上CO2还原为C2产物的电位决定步骤能垒为0.61 eV, 低于Cu(100)表面的(0.72 eV).
本文采用了一种简便的湿化学法制备了CuPd(100)界面催化剂. X射线衍射和X射线光电子能谱测试以及扩展X射线吸收精细结构光谱结果表明, 合成的是相分离的CuPd双金属催化剂, 而非CuPd合金催化剂. 同时高分辨透射电镜可以观察到清晰的CuPd(100)界面. 由此可见, 本文成功合成了CuPd(100)界面催化剂. 程序升温脱附实验结果表明, CuPd(100)界面对CO2和CO*的吸附比Cu强, 结果与理论预测一致. 气体传感实验结果表明, CuPd(100)界面CO2*加氢能力比Cu强. 为评估CuPd(100)界面催化剂的催化活性, 进行了CO2电化学还原实验. 结果表明, 在0.1 mol/L的KHCO3电解液中, CuPd(100)界面催化剂在‒1.4 VRHE下, C2产物的法拉第效率为50.3% ± 1.2%, 是同电位下Cu催化剂的(23.6% ± 1.5%)的2.1倍, C2产物的选择性是Cu催化剂的2.4倍, 且具有更高的电流密度和更大的电化学活性面积. 本文通过调控中间反应能垒以合理设计铜基CO2还原电催化剂提供了参考.

关键词: 二氧化碳电催化还原, 二碳产物, 铜钯界面催化剂, 中间反应能垒

Abstract:

Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity. Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon products. However, Cu exhibits an unfavorable activity and selectivity for the generation of C2 products because of the insufficient amount of CO* provided for the C-C coupling. Based on the strong CO2 adsorption and ultrafast reaction kinetics of CO* formation on Pd, an intimate CuPd(100) interface was designed to lower the intermediate reaction barriers and improve the efficiency of C2 product formation. Density functional theory (DFT) calculations showed that the CuPd(100) interface enhanced the CO2 adsorption and decreased the CO2* hydrogenation energy barrier, which was beneficial for the C-C coupling. The potential-determining step (PDS) barrier of CO2 to C2 products on the CuPd(100) interface was 0.61 eV, which was lower than that on Cu(100) (0.72 eV). Encouraged by the DFT calculation results, the CuPd(100) interface catalyst was prepared by a facile chemical solution method and characterized by transmission electron microscopy. CO2 temperature-programmed desorption and gas sensor experiments further confirmed the enhancement of the CO2 adsorption and CO2* hydrogenation ability of the CuPd(100) interface catalyst. Specifically, the obtained CuPd(100) interface catalyst exhibited a C2 Faradaic efficiency of 50.3% ± 1.2% at ‒1.4 VRHE in 0.1 M KHCO3, which was 2.1 times higher than that of the Cu catalyst (23.6% ± 1.5%). This study provides the basis for the rational design of Cu-based electrocatalysts for the generation of multicarbon products by fine-tuning the intermediate reaction barriers.

Key words: Carbon dioxide reduction, C2 products, Electrocatalyst, Copper-palladium interface, Intermediate reaction barriers