催化学报 ›› 2023, Vol. 53: 143-152.DOI: 10.1016/S1872-2067(23)64515-2

• 论文 • 上一篇    下一篇

用于高效电催化甘油氧化的CuCoN0.6/CP催化剂

师凯a,b, 司娣a,b, 滕雪a,b, 陈立松a,b,d,*(), 施剑林c,*()   

  1. a华东师范大学化学与分子工程学院, 上海市绿色化学与化工过程绿色化重点实验室, 上海200062
    b华东师范大学, 石油化工分子转化与反应工程全国重点实验室, 上海200062
    c中国科学院上海硅酸盐研究所, 上海200050
    d崇明生态研究院, 上海202162
  • 收稿日期:2023-07-10 接受日期:2023-08-30 出版日期:2023-10-18 发布日期:2023-10-25
  • 通讯作者: *电子信箱: lschen@chem.ecnu.edu.cn (陈立松); jlshi@mail.sic.ac.cn (施剑林).
  • 基金资助:
    国家重点研究计划青年科学家项目(2022YFB4002700);上海市青年科技启明星(22QA1403400);上海市自然科学基金(21ZR1418700)

Enhanced electrocatalytic glycerol oxidation on CuCoN0.6/CP at significantly reduced potentials

Kai Shia,b, Di Sia,b, Xue Tenga,b, Lisong Chena,b,d,*(), Jianlin Shic,*()   

  1. aShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
    bState Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai 200062, China
    cShanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    dInstitute of Eco-Chongming, Shanghai 202162, China
  • Received:2023-07-10 Accepted:2023-08-30 Online:2023-10-18 Published:2023-10-25
  • Contact: *E-mail: lschen@chem.ecnu.edu.cn (L. Chen), jlshi@mail.sic.ac.cn (J. Shi).
  • Supported by:
    National Key R&D Program of China(2022YFB4002700);Shanghai Science and Technology Committee Rising-Star Program(22QA1403400);The Natural Science Foundation of Shanghai(21ZR1418700)

摘要:

随着人口的不断增长和经济的高速发展, 化石燃料(煤、石油和天然气等)的使用量急剧增加, 能源短缺、温室效应、环境污染等问题日益严重. 因此, 发展可再生的清洁能源以取代化石燃料对人类社会的可持续发展至关重. 由于氢气具有能量密度高、来源丰富、清洁无毒等优点, 有望成为替代化石燃料的最有前景的可再生能源. 然而, 目前氢气主要来自化石燃料的蒸汽重整, 该过程需要高温高压, 而且产生的氢气杂质含量高、纯化过程复杂, 不能满足绿色化学生产的要求. 利用可再生电力电解水制氢是一种绿色高效的制氢方式, 但其实际应用受限于动力学过程缓慢的阳极析氧反应(OER). 因此, 采用动力学过程更快的有机小分子(甲醇、乙二醇、甘油等)氧化反应来替代OER, 不仅可以降低制氢能耗, 还能在制氢的同时获得高附加值氧化产物.

本文采用水热结合高温焙烧法制备了负载于导电碳纸上CuCoN0.6 (CuCoN0.6/CP)纳米线催化剂. 采用扫描电子显微镜与透射电子显微镜等对催化剂形貌进行表征. 结果表明, 表面粗糙的CuCoN0.6纳米线组成的纳米小球与碳纸紧密结合. X射线光电子能谱结果表明, Cu+成功引入到CuCoN0.6/CP中. 电化学性能测试结果表明, CuCoN0.6/CP仅需1.07 V的阳极电位即可达到10 mA cm‒2的电流密度. 此外, CuCoN0.6/CP具有较小的电荷转移电阻(93.45 Ω)以及较大的电化学活性表面积(109.6 mF cm‒2), 并且目标产物甲酸的法拉第效率达到90.0%. 循环伏安和原位拉曼光谱测试结果表明, 在电催化过程中催化剂原位重构形成CoOOH活性位点, Cu+和Co2+的氧化促进了活性羟基(OH*)的形成, 从而提升了甘油电催化氧化性能. 原位红外光谱测试结果表明, 甘油氧化的反应路径如下: 甘油首先氧化生成甘油醛, 再氧化生成甘油酸, 其中甘油酸经过C-C键断裂生成乙醇酸和甲酸, 然后乙醇酸经过C-C键的断裂生成甲酸, 最后成功分离出高纯度、高附加值的产品二甲酸钾.

综上, 本文通过精心设计非贵金属催化剂, 提高其在碱性条件下的催化活性, 为有机小分子的电催化转化以及非贵金属电催化剂的设计提供了参考, 对后续研究具有参考意义.

关键词: 电催化甘油氧化, 活性羟基物种, 原位重构, 低电位

Abstract:

Electrocatalytic alcohol oxidation coupled with the hydrogen evolution reaction, wherein a thermodynamically favorable oxidation reaction replaces the sluggish kinetics of the oxygen evolution reaction, has recently attracted considerable attention. However, the development of nonprecious-metal electrocatalysts capable of delivering much lower oxidation potentials holds great significance. In this study, we proposed and developed CuCoN0.6 nanowires loaded on conductive carbon paper (denoted as CuCoN0.6/CP) as an efficient catalyst for selective glycerol oxidation to formate. Our catalyst achieved a remarkably high faradic efficiency of 90.0% towards formate production. More notably, it required an anode potential as low as 1.07 V to achieve a current density of 10 mA cm−2, a significantly lower potential than that reported in the literature. Experimental characterizations reveal that the oxidations of Cu+ and Co2+ ions promoted the formation of reactive hydroxyl species, which are responsible for the substantially reduced oxidation potential and enhanced glycerol oxidation performance. Furthermore, we investigated the reaction pathway of glycerol oxidation and structural changes in the catalysts. The catalyst reconstruction led to the formation of CoOOH, which is considered as the active site for glycerol oxidation. Finally, we successfully separated high-purity and value-added potassium diformate product. This work not only advances the electrocatalytic conversion of biomass-derived alcohols but also provides insights into the design of electrocatalysts with broad applications.

Key words: Electrocatalysis glycerol oxidation, Reactive hydroxyl species, In-situ reconstruction, Lower potential