催化学报 ›› 2024, Vol. 58: 105-122.DOI: 10.1016/S1872-2067(23)64594-2
黄元勇a, 杨洪a, 陆欣宇b, 陈敏a, 施伟东a,b,*()
收稿日期:
2023-10-26
接受日期:
2024-01-02
出版日期:
2024-03-18
发布日期:
2024-03-28
通讯作者:
*电子邮箱: swd1978@ujs.edu.cn (施伟东).
基金资助:
Yuanyong Huanga, Hong Yanga, Xinyu Lub, Min Chena, Weidong Shia,b,*()
Received:
2023-10-26
Accepted:
2024-01-02
Online:
2024-03-18
Published:
2024-03-28
Contact:
*E-mail: swd1978@ujs.edu.cn (W. Shi).
About author:
Weidong Shi (College of environmental and chemical engineering, Jiangsu University of Science and Technology) received his PhD from Changchun Institute of Applied Chemical, National Key Laboratory of Rare Earth Resources Utilization, Chinese Academy of Science in 2007. Then he conducted postdoctoral research at the University of Glasgow and University of Cologne in Germany. His research interests currently focus on new materials and energy photocatalysis, electrocatalysis with emphasis on design of new catalysts and control of morphology, microstructure and reaction mechanism for hydrogen production, environmental pollutants degradation, etc. He has been granted by the National Science Fund for Distinguished Young Scholars in 2022. He has published more than 300 scientific papers with 10126 total citations (H-index 57), and is among the Highly Cited Researchers by Clarivate Analytics and the Most Cited Chinese Researchers by Elsevier.
Supported by:
摘要:
实现高效、低成本的太阳能光催化全分解水制氢是解决当前环境污染和化石能源过度使用等问题的理想方案. 然而, 目前光催化分解水的转化效率(低于10%)普遍较低, 这成为其实际应用的主要障碍. 从太阳光谱的响应范围来看, 现有的光催化剂大多局限于紫外光或可见光区域, 而近红外光区的光催化剂开发仍然非常有限. 尽管近红外光在太阳光谱中占比超过一半, 蕴含着巨大的能源潜力, 但遗憾的是, 目前大部分光催化剂无法在该波段实现高效的光催化反应. 根据理论预测, 光分解水的转化效率有望随着催化剂响应太阳光波长范围的扩大而显著提高. 因此, 如何最大限度地利用太阳能, 特别是近红外光区域的光能, 开发高效的近红外光响应光催化全解水制氢催化剂, 已成为当前能源、环境、化学工程领域研究的热点.
本文综述了近红外光驱动全分解水光催化剂在材料设计和调控方面的最新进展, 涉及窄带隙半导体、带隙工程、上转换效应、局域表面等离子体效应和光敏化作用等策略. 首先, 从热力学和动力学的角度分析了近红外光驱动全分解水的难点: 对于大多数半导体而言, 要实现近红外驱动全分解水不仅要求理论带隙窄于1.77 eV, 而且必须超过水氧化还原分解电位(1.23 eV), 同时由于存在电位损失和动力学过电位, 实际的带隙结构应在1.6-2.4 eV, 这对半导体的能带结构提出了较为苛刻的要求. 此外, 全分解水反应的可逆性、溶解氧的影响以及材料的光稳定性问题也是实现近红外光驱动全分解水的挑战. 其次, 总结了各方法制备的催化剂全分解水制氢的性能, 分析了其近红外光子捕获方法的优缺点, 特别指出了如何在每种方法的基础上进一步促进光生载流子的分离以及近红外光子的捕获能力(比如: 负载贵金属单原子助催化剂、多种方法结合构筑多元复合体系以及光催化剂表面优化等). 同时, 强调了在近红外驱动全分解水过程中材料特征、催化性质与功能机理三者之间的关系. 尤其是利用等离子体效应和光敏化作用来实现近红外光驱动全分解水的机理, 目前尚不明确, 需要结合理论计算以及先进的时空分辨仪器进一步研究电荷转移机制. 另外, 总结了全光谱响应的全分解水制氢光催化剂在材料设计和调控方面的最新进展, 包括: 光敏化作用的应用、带隙调控的策略、局域表面等离子体效应的研究, 以及乌尔巴赫带尾吸收捕获技术的探索. 最后, 归纳并展望了未来近红外驱动全分解水光催化剂所面临的挑战与机遇.
尽管近年来国内外学者们围绕着近红外驱动全分解水制氢光催化剂开展了系列研究工作, 取得了一些突破性进展, 但近红外驱动全分解水制氢效率仍然较低以及对于近红外响应光催化剂的设计和调控方面仍然面临着许多挑战. 如何设计和开发廉价、稳定且高效的近红外驱动全分解水制氢光催化剂仍需进一步探索. 因此, 未来需要结合不同构筑方法的优势来加强近红外区的光捕获能力、实现多元复合材料界面间的精准调控、通过高端原位时空分辨仪器以及理论计算剖析近红外驱动全分解水的过程等方面对近红外响应光催化材料进行深入研究.
黄元勇, 杨洪, 陆欣宇, 陈敏, 施伟东. 近红外驱动光催化全分解水: 进展与展望[J]. 催化学报, 2024, 58: 105-122.
Yuanyong Huang, Hong Yang, Xinyu Lu, Min Chen, Weidong Shi. Near infrared-driven photocatalytic overall water splitting: Progress and perspective[J]. Chinese Journal of Catalysis, 2024, 58: 105-122.
Fig. 1. Number of publications in the last five years in the photocatalytic area using “ultraviolet* or UV light-driven”, “visible* or vis-light-driven”, “near-infrared* or NIR-driven” and “photocatalytic overall water splitting” as the four topical key words. (Adapted from ISI Web of Science Core Collection, date of search: Oct. 3, 2023).
Photocatalyst | NIR photon harvester | Material design method | Light source | Optical power density (mW cm‒2) | Reaction temperature (K) | Extended wavelength (nm) | H2 production (μmol h‒1) | O2 production (μmol h‒1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
PtOx/WN | WN | band engineering | 300 W Xenon lamp | N.A. | 283 | 765 | 5 × 10‒7 | 2.5 × 10‒7 | [ |
W2N/C/TiO | W2N | hybrid with narrow bandgap semiconductor | 300 W Xenon lamp | N.A. | 277 | > 700 | 5 × 10‒2 | 2.5 × 10‒2 | [ |
WO2-NaxWO3-CDs | WO2 | hybrid with narrow bandgap semiconductor | N.A. | N.A. | N.A. | > 760 | 4.74 | 2.28 | [ |
BP/C3N4 | BP | surface plasmonic effect | 300 W Xenon lamp | N.A. | N.A. | 730 | 2 × 10‒2 | N.A. | [ |
CuCo-CDs | CuCo | surface plasmonic Effect | 300 W Xenon lamp | N.A. | N.A. | 800 | N.A. | N.A. | [ |
Ag-PDA/ZnO | Ag-PDA | surface plasmonic effect | CEL-PECX2000 xenon lamp light source | N.A. | 300 ± 1 | 908 | 1.41 | 0.68 | [ |
CdS-RGO-NaYF4- Yb3+/Er3+ | NaYF4-Yb3+/Er3+ | up-conversion effect | 3-W 980 nm laser | N.A. | 298 | 980 | 0.2225 | N.A. | [ |
r-CQDs-TiO2 | CQDs | up-conversion effect | 300 W Xenon lamp | 20 | N.A. | > 800 | 3.02 | 1.5 | [ |
PA-Ni1.1@ PCN/Pt5hNIR | PA-Ni | photosensitization | 300 W Xenon lamp | 3.9 | 293 | > 800 | 5.8 × 10‒2 | 2.7 × 10‒2 | [ |
Table 1 Summary of current progress in component design and engineering of NIR-activated photocatalysts for overall water splitting.
Photocatalyst | NIR photon harvester | Material design method | Light source | Optical power density (mW cm‒2) | Reaction temperature (K) | Extended wavelength (nm) | H2 production (μmol h‒1) | O2 production (μmol h‒1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
PtOx/WN | WN | band engineering | 300 W Xenon lamp | N.A. | 283 | 765 | 5 × 10‒7 | 2.5 × 10‒7 | [ |
W2N/C/TiO | W2N | hybrid with narrow bandgap semiconductor | 300 W Xenon lamp | N.A. | 277 | > 700 | 5 × 10‒2 | 2.5 × 10‒2 | [ |
WO2-NaxWO3-CDs | WO2 | hybrid with narrow bandgap semiconductor | N.A. | N.A. | N.A. | > 760 | 4.74 | 2.28 | [ |
BP/C3N4 | BP | surface plasmonic effect | 300 W Xenon lamp | N.A. | N.A. | 730 | 2 × 10‒2 | N.A. | [ |
CuCo-CDs | CuCo | surface plasmonic Effect | 300 W Xenon lamp | N.A. | N.A. | 800 | N.A. | N.A. | [ |
Ag-PDA/ZnO | Ag-PDA | surface plasmonic effect | CEL-PECX2000 xenon lamp light source | N.A. | 300 ± 1 | 908 | 1.41 | 0.68 | [ |
CdS-RGO-NaYF4- Yb3+/Er3+ | NaYF4-Yb3+/Er3+ | up-conversion effect | 3-W 980 nm laser | N.A. | 298 | 980 | 0.2225 | N.A. | [ |
r-CQDs-TiO2 | CQDs | up-conversion effect | 300 W Xenon lamp | 20 | N.A. | > 800 | 3.02 | 1.5 | [ |
PA-Ni1.1@ PCN/Pt5hNIR | PA-Ni | photosensitization | 300 W Xenon lamp | 3.9 | 293 | > 800 | 5.8 × 10‒2 | 2.7 × 10‒2 | [ |
Fig. 4. (a) The main limiting factors of NIR-activated overall water splitting. (b) The basic process of NIR-driven overall water splitting using single semiconductor-based photocatalytic systems.
Fig. 7. (a) The crystal structure model of WN. (b) XRD pattern of WN. (c) Theoretical band structure of WN. (d) The absorption spectrum of WN. Inset: Tauc plots of WN. (e) The dependence of photocatalytic overall water splitting on the cut-off wavelength. (f) Possible photocatalytic mechanism. (g) Standard Gibbs free energy of water splitting. Reprinted with permission from Ref. [46]. Copyright 2017, John Wiley and Sons.
Fig. 8. (a) Schematical illustration of the preparation of W2N/C/TiO ternary nanocomposites. (b) The absorption spectrum of as-prepared samples. (c) Photocurrent response of various samples at λ > 700 nm. (d) Time-resolved PL spectra. (e) Time-dependent on activity of NIR-activated overall water splitting using W2N/C/TiO photocatalysts. Reprinted with permission from Ref. [74]. Copyright 2021, Elsevier.
Fig. 9. (a) Schematic diagram of plasmonic oscillation. (b) The various energy forms in the activation process under NIR light irradiation. (c) The mechanism of plasmon-induced energy transfer (PIRET). (d) Direct electron injection energy transfer (DET) mechanism.
Fig. 10. (a) The schematic diagram of the plasmonic up-conversion path. (b) TEM image of Ag-%5 PDA-ZnO. (c) The absorption spectra of the as-obtained samples. (d) The photocurrent response at λ = 908 nm. (e) Wavelength dependent activity of photocatalytic overall water splitting. Reprinted with permission from Ref. [92]. Copyright 2022, Royal Society of Chemistry.
Fig. 11. Principal diagram for the up-conversion paths of Ln3+-doped crystals. Reprinted with permission from Ref. [13]. Copyright 2021, John Wiley and Sons.
Fig. 12. (a) TEM image. (b) PL spectra of the samples with 980 nm excitation. (c) Fluorescence lifetime spectra. (d) Photocatalytic water splitting performance. (e) Electron transfer from GQDs to TiO2 studied by in situ XPS. (f) Proposed possible mechanism. Reprinted with permission from Ref. [110]. Copyright 2022, Science.
Fig. 13. (a) Schematic diagram of preparation for PA-Ni@PCN/Pt-SAC ternary composites. (b) Elemental mapping images. (c) NIR-activated overall water splitting of PA-Ni1.1@PCN/Pt5hNIR. (d) The decay kinetics of the transient absorption at 850 nm. (e) Proposed possible mechanism. Reprinted with permission from Ref. [117]. Copyright 2022, John Wiley and Sons.
Fig. 14. (a) Schematic diagram for the preparation of CDs-sensitized TiO2 systems. (b) TEM image and a SAED pattern (inset) of the as-obtained CDs. (c) UV-Vis-NIR absorption spectrum of as-prepared samples. (d) Photocatalytic overall water splitting using CDs/TiO2 composites under different irradiation conditions. (e) Proposed possible mechanism. Reprinted with permission from Ref. [124]. Copyright 2017, Royal Society of Chemistry.
Fig. 15. (a) Crystal structures of Ce(IV)-UiO-66-X (X = functional groups). (b) XRD pattern of the Ce-UiO-66-NH2 obtained at different temperatures (25, 40, 60 °C), picture insert: the photograph of the resulting solution. (c) N2 adsorption-desorption isotherms of as-prepared samples. (d) The band diagram structures of as-prepared samples. (e) Photocatalytic overall water splitting using Pt@Ce-UiO-66-NH2 under simulated sunlight irradiation. Reprinted with permission from Ref. [127]. Copyright 2023, Royal Society of Chemistry.
Fig. 16. (a) Schematic illustration of the synthesis of Au@N-doped TiO2. (b) UV-Vis-NIR absorption spectrum. (c) OCVD of N-doped TiO2 and Au particles confined N-doped TiO2. (d) Average lifetime of the photogenerated carriers (τn) obtained by OCVD. (e) Photocatalytic overall water splitting using the Au@N-doped TiO2 under various irradiation conditions. Reprinted with permission from Ref. [128]. Copyright 2016, Elsevier.
Fig. 17. (a) Schematic representation of the photocatalytic overall water splitting by means of an ultra-thin a-NiOx under irradiation with the full spectrum. (b) Comparison of the XRD patterns with a-NiOx and c-NiO. (c) UV-Vis-NIR absorption spectra. Transient absorption spectra of (d) a-NiOx, (e) C3N4 and (f) a-NiOx||C3N4 after irradiation with a 400 nm laser flash. (g) Comparison of photocatalytic water splitting performance between a-NiOx||Pt/C3N4 and c-NiO||Pt/C3N4. (h) Wavelength-dependent AQE of a-NiOx||Pt/C3N4. (i) Stability test of a-NiOx||Pt/C3N4 under irradiation with the full spectrum. Reprinted with permission from Ref. [136]. Copyright 2021, Elsevier.
|
[1] | 王乐乐, 程文瑶, 王嘉鑫, 杨娟, 刘芹芹. 构筑共轭聚合物基S型异质结分子内和界面电场以实现高效光催化制氢[J]. 催化学报, 2024, 58(3): 194-205. |
[2] | 潘劲康, 张艾彩珺, 张莉华, 董鹏玉. 由质子化D-A型聚合物和MoS2构建S型异质结实现高效光催化析氢[J]. 催化学报, 2024, 58(3): 180-193. |
[3] | 杨婷婷, 汪静, 王中辽, 张金锋, 代凯. 双聚合物Cd3(C3N3S3)2/Zn3(C3N3S3)2 S型异质结增强光催化产氢性能[J]. 催化学报, 2024, 58(3): 157-167. |
[4] | 刘玉庭, 聂贝黎, 李宁, 刘慧芳, 王峰. 氯自由基介导的光催化芳基醚C(sp3)-H氧化生成酯[J]. 催化学报, 2024, 58(3): 123-128. |
[5] | 李奇, 李杰浩, 白惠敏, 李发堂. 催化剂晶面工程在光/电催化中的研究进展[J]. 催化学报, 2024, 58(3): 86-104. |
[6] | 曾冰, 黄凤伟, 王月欣, 熊康慧, 郎贤军. TEMPO显著加速芘基金属有机框架光催化硫化物到亚砜的转化[J]. 催化学报, 2024, 58(3): 226-236. |
[7] | 刘嘉立, 戴慧聪, 刘鑫, 任亦起, 王茂弟, 杨启华. 电荷分离和转移调控光催化剂稳定的Pickering乳液用于光-酶偶联催化[J]. 催化学报, 2024, 57(2): 114-122. |
[8] | 李敏, 于世新, 黄洪伟. 新兴的多元铋系光催化剂: 结构分类、制备、改性及应用[J]. 催化学报, 2024, 57(2): 18-50. |
[9] | 张勇, 邱俊逸, 朱必成, 孙国太, 程蓓, 王临曦. 空心球状共价有机框架负载金纳米粒子用于光催化生产过氧化氢[J]. 催化学报, 2024, 57(2): 143-153. |
[10] | 金昱丞, 刘小琳, 曲琛, 李长骏, 王海龙, 詹晓宁, 曹昕怡, 李晓锋, 于宝秋, 张琪, 齐冬冬, 姜建壮. 苝二酰亚胺共价有机框架超级还原剂用于高效光催化芳基卤化物还原反应[J]. 催化学报, 2024, 57(2): 171-183. |
[11] | 曹可弓, 高田宇, 廖黎丽, 冉川昆, 蒋元旭, 章炜, 周琦, 叶剑衡, 蓝宇, 余达刚. 可见光催化CO2参与的芳基烯烃碳碳双键断键羧基化反应[J]. 催化学报, 2024, 56(1): 74-80. |
[12] | 杨成, 李鑫, 李梅, 梁桂杰, 靳治良. CuMn2O4/石墨炔S型异质结上锚定氧化助催化剂促进曙红敏化光催化析氢[J]. 催化学报, 2024, 56(1): 88-103. |
[13] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[14] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[15] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||