催化学报 ›› 2024, Vol. 58: 105-122.DOI: 10.1016/S1872-2067(23)64594-2

• 综述 • 上一篇    下一篇

近红外驱动光催化全分解水: 进展与展望

黄元勇a, 杨洪a, 陆欣宇b, 陈敏a, 施伟东a,b,*()   

  1. a江苏大学化学化工学院, 江苏镇江212013
    b江苏科技大学环境与化学工程学院, 江苏镇江212003
  • 收稿日期:2023-10-26 接受日期:2024-01-02 出版日期:2024-03-18 发布日期:2024-03-28
  • 通讯作者: *电子邮箱: swd1978@ujs.edu.cn (施伟东).
  • 基金资助:
    国家自然科学基金(22225808);国家自然科学基金(22075111);中德合作集团项目(GZ1579);江苏省国际科技创新支撑计划合作项目(BZ2022045);江苏大学应急管理学院科研专项(KY-A-02)

Near infrared-driven photocatalytic overall water splitting: Progress and perspective

Yuanyong Huanga, Hong Yanga, Xinyu Lub, Min Chena, Weidong Shia,b,*()   

  1. aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    bCollege of environmental and chemical engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Received:2023-10-26 Accepted:2024-01-02 Online:2024-03-18 Published:2024-03-28
  • Contact: *E-mail: swd1978@ujs.edu.cn (W. Shi).
  • About author:Weidong Shi (College of environmental and chemical engineering, Jiangsu University of Science and Technology) received his PhD from Changchun Institute of Applied Chemical, National Key Laboratory of Rare Earth Resources Utilization, Chinese Academy of Science in 2007. Then he conducted postdoctoral research at the University of Glasgow and University of Cologne in Germany. His research interests currently focus on new materials and energy photocatalysis, electrocatalysis with emphasis on design of new catalysts and control of morphology, microstructure and reaction mechanism for hydrogen production, environmental pollutants degradation, etc. He has been granted by the National Science Fund for Distinguished Young Scholars in 2022. He has published more than 300 scientific papers with 10126 total citations (H-index 57), and is among the Highly Cited Researchers by Clarivate Analytics and the Most Cited Chinese Researchers by Elsevier.
  • Supported by:
    National Natural Science Foundation of China(22225808);National Natural Science Foundation of China(22075111);Sino-German Cooperation Group Project(GZ1579);Jiangsu Province Innovation Support Program International Science and Technology Cooperation Project(BZ2022045);Special Scientific Research Project of School of Emergency Management, Jiangsu University(KY-A-02)

摘要:

实现高效、低成本的太阳能光催化全分解水制氢是解决当前环境污染和化石能源过度使用等问题的理想方案. 然而, 目前光催化分解水的转化效率(低于10%)普遍较低, 这成为其实际应用的主要障碍. 从太阳光谱的响应范围来看, 现有的光催化剂大多局限于紫外光或可见光区域, 而近红外光区的光催化剂开发仍然非常有限. 尽管近红外光在太阳光谱中占比超过一半, 蕴含着巨大的能源潜力, 但遗憾的是, 目前大部分光催化剂无法在该波段实现高效的光催化反应. 根据理论预测, 光分解水的转化效率有望随着催化剂响应太阳光波长范围的扩大而显著提高. 因此, 如何最大限度地利用太阳能, 特别是近红外光区域的光能, 开发高效的近红外光响应光催化全解水制氢催化剂, 已成为当前能源、环境、化学工程领域研究的热点.

本文综述了近红外光驱动全分解水光催化剂在材料设计和调控方面的最新进展, 涉及窄带隙半导体、带隙工程、上转换效应、局域表面等离子体效应和光敏化作用等策略. 首先, 从热力学和动力学的角度分析了近红外光驱动全分解水的难点: 对于大多数半导体而言, 要实现近红外驱动全分解水不仅要求理论带隙窄于1.77 eV, 而且必须超过水氧化还原分解电位(1.23 eV), 同时由于存在电位损失和动力学过电位, 实际的带隙结构应在1.6-2.4 eV, 这对半导体的能带结构提出了较为苛刻的要求. 此外, 全分解水反应的可逆性、溶解氧的影响以及材料的光稳定性问题也是实现近红外光驱动全分解水的挑战. 其次, 总结了各方法制备的催化剂全分解水制氢的性能, 分析了其近红外光子捕获方法的优缺点, 特别指出了如何在每种方法的基础上进一步促进光生载流子的分离以及近红外光子的捕获能力(比如: 负载贵金属单原子助催化剂、多种方法结合构筑多元复合体系以及光催化剂表面优化等). 同时, 强调了在近红外驱动全分解水过程中材料特征、催化性质与功能机理三者之间的关系. 尤其是利用等离子体效应和光敏化作用来实现近红外光驱动全分解水的机理, 目前尚不明确, 需要结合理论计算以及先进的时空分辨仪器进一步研究电荷转移机制. 另外, 总结了全光谱响应的全分解水制氢光催化剂在材料设计和调控方面的最新进展, 包括: 光敏化作用的应用、带隙调控的策略、局域表面等离子体效应的研究, 以及乌尔巴赫带尾吸收捕获技术的探索. 最后, 归纳并展望了未来近红外驱动全分解水光催化剂所面临的挑战与机遇.

尽管近年来国内外学者们围绕着近红外驱动全分解水制氢光催化剂开展了系列研究工作, 取得了一些突破性进展, 但近红外驱动全分解水制氢效率仍然较低以及对于近红外响应光催化剂的设计和调控方面仍然面临着许多挑战. 如何设计和开发廉价、稳定且高效的近红外驱动全分解水制氢光催化剂仍需进一步探索. 因此, 未来需要结合不同构筑方法的优势来加强近红外区的光捕获能力、实现多元复合材料界面间的精准调控、通过高端原位时空分辨仪器以及理论计算剖析近红外驱动全分解水的过程等方面对近红外响应光催化材料进行深入研究.

关键词: 光催化, 近红外区, 全分解水, 材料设计, 机理

Abstract:

The conversion of solar energy into clean and sustainable hydrogen (H2) fuel from water using simple and cost-effective photocatalytic technologies is one of the most potential ways for achieving carbon neutrality. However, the near-infrared (NIR) region of solar spectrum, which encompasses approximately half of the total solar photon flux, remains an abundant energy source that is currently underutilized. The exploration of NIR-active photocatalysts for solar overall water splitting, as highlighted here, represents not only a momentous breakthrough towards sustainable H2 generation, but also initiates a new chapter in the realm of artificial photosynthesis. In this review, we delve into the latest advancements in material design and engineering of NIR-active and full-spectrum-responsive photocatalysts for solar overall water splitting, highlighting their current status and potential impact. A primary focus is on gaining a fundamental understanding of the intricate relationship between material characteristics, catalytic properties, and functional mechanisms underlying the NIR-driven water splitting process. Furthermore, we outline the challenges and future prospects for further exploiting the vast potential of NIR-activated photocatalysts in solar overall water splitting.

Key words: Photocatalysis, Near-infrared region, Overall water splitting, Material design, Mechanism