催化学报 ›› 2024, Vol. 66: 195-211.DOI: 10.1016/S1872-2067(24)60140-3

• 论文 • 上一篇    下一篇

自旋态调控与拓扑化学转变策略优化析氧反应中间体吸附能

徐金畅a,b,1, 简咏琦a,1, 余光强a, 梁婉莉a, 朱俊民a, 杨慕紫c, 陈建c, 谢方艳c, 金彦烁a, 王楠a,*(), 李希波a,*(), 孟辉a,*()   

  1. a暨南大学物理学系, 广东省真空镀膜技术与新能源材料工程技术研究中心, 广州市真空薄膜技术与新能源材料重点实验室, 思源实验室, 广东省纳米光学操控重点实验室, 广东广州 510632
    b广东大湾区空天信息研究院, 广东省太赫兹量子电磁学重点实验室, 广东广州 510700
    c中山大学分析测试中心, 广东广州 510275
  • 收稿日期:2024-06-30 接受日期:2024-09-03 出版日期:2024-11-18 发布日期:2024-11-10
  • 通讯作者: *电子邮箱: nanwang@email.jnu.edu.cn (王楠),lixibo@jnu.edu.cn (李希波),tmh@jnu.edu.cn (孟辉).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22478151);国家自然科学基金(22209056);国家自然科学基金(22075102);国家自然科学基金(22005120);国家自然科学基金(21576301);国家自然科学基金(51973244);国家自然科学基金(12174154);国家自然科学基金(21703081);广东省基础与应用基础研究基金(2023A1515010270);广东省基础与应用基础研究基金(2023A1515010921);广东省自然科学基金(2021A1515010090);中国博士后科研基金(2020M673071);广州市科技规划项目(201605030008);广州市科技规划项目(202102020963)

Manipulating the spin configuration by topochemical transformation for optimized intermediates adsorption ability in oxygen evolution reaction

Jinchang Xua,b,1, Yongqi Jiana,1, Guang-Qiang Yua, Wanli Lianga, Junmin Zhua, Muzi Yangc, Jian Chenc, Fangyan Xiec, Yanshuo Jina, Nan Wanga,*(), Xi-Bo Lia,*(), Hui Menga,*()   

  1. aSiyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, Jinan University, Guangzhou 510632, Guangdong, China
    bGuangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, Guangdong, China
    cInstrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
  • Received:2024-06-30 Accepted:2024-09-03 Online:2024-11-18 Published:2024-11-10
  • Contact: *E-mail: nanwang@email.jnu.edu.cn (N. Wang),lixibo@jnu.edu.cn (X.-B. Li),tmh@jnu.edu.cn (H. Meng).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22478151);National Natural Science Foundation of China(22209056);National Natural Science Foundation of China(22075102);National Natural Science Foundation of China(22005120);National Natural Science Foundation of China(21576301);National Natural Science Foundation of China(51973244);National Natural Science Foundation of China(12174154);National Natural Science Foundation of China(21703081);Guangdong Basic and Applied Basic Research Foundation(2023A1515010270);Guangdong Basic and Applied Basic Research Foundation(2023A1515010921);Natural Science Foundation of Guangdong Province, China(2021A1515010090);Postdoctoral Research Foundation of China(2020M673071);National Innovation and Entrepreneurship Training Program for Undergraduate and the Science and Technology Planning Project of Guangzhou, China(201605030008);National Innovation and Entrepreneurship Training Program for Undergraduate and the Science and Technology Planning Project of Guangzhou, China(202102020963)

摘要:

析氧反应(OER)是清洁能源转化过程中的关键反应之一, 尤其在电解水制氢和金属空气电池等领域具有重要应用. OER过程会将单线态的氢氧根离子或水分子转化为三重态的氧气分子, 因此, 自旋态对反应性能的影响非常显著. 然而, 由于材料配位环境的复杂性, 调控材料的自旋态成为一大挑战, 这极大阻碍了对反应机制的深入理解. 因此, 找到一种能够精确调控自旋态的方法, 对于提升OER整体催化效率至关重要. 该挑战不仅在于材料设计的复杂性, 还涉及到如何在维持结构稳定性的同时优化自旋态的电子分布, 这为催化剂的研究提出了新的要求和方向.

本文采用拓扑化学转变策略, 成功合成了一系列eg轨道占据数从1.67到1.37的硒化物. 该策略以单斜相亚硒酸钴(m-CoSeO3)为反应的前驱体, 其层状结构和Co-O6配位结构为后续的自旋态调控提供了理想的初始条件或平台. 拓扑化学转变后, 材料的配位环境发生了显著变化, 从Co-O-Se-O-Co转变为Co-Se-Co, 显著增强了晶体场强度, 并诱发了自旋态的重组, 使eg轨道的电子占据数显著减少. 实验和理论计算表明, 自旋态对OER催化活性的影响主要体现在两个方面: 其一, 自旋态会显著影响催化剂对中间产物的吸/脱附能力, 从而影响反应能垒; 其二, 自旋态改变了活性位点附近的磁性排序, 进而影响特定自旋方向电子的选择性移除过程. 从中间产物吸附能力的角度看, 第一性原理计算结果表明, 自旋态变化显著影响了OER的限速步骤, 将反应的限速步骤由脱附转变为吸附, 弱化了对中间产物的吸附能力, 显著降低了反应能垒, 从而提升了整体催化性能. 研究结果还发现, 材料的自旋选择性移除效应也得到增强, 拓扑化学转变后, 材料由反铁磁有序转变为弱铁磁有序, 该变化大幅降低了生成三重态氧气分子所需的能垒. 此外, 催化剂的eg轨道填充与OER催化性能呈现负相关关系, 该现象进一步验证了OER反应对自旋态的依赖性, 说明自旋态调控对催化剂性能的提升具有重要作用. 同时, 吸附能力的弱化在析氢反应(HER)中也同样适用, 表明拓扑化学转变后的材料在双功能催化中具有潜在的应用前景. 实验结果表明, 拓扑化学转变得到的硒化钴催化剂在OER中的过电位为250 mV, 而在HER中的过电位仅为35 mV, 全电解水反应的过电位为270 mV, 展现出较好的催化活性.

综上, 本文展示了拓扑化学转变方法在有效调控自旋态并显著提升全电解水催化性能方面的潜力. 该方法不仅为高效电催化材料的设计提供了新的思路, 还为未来的催化剂开发和优化提供了重要参考, 尤其在自旋态调控的领域, 展现了广泛的应用前景.

关键词: 自旋态调控, eg轨道占据, 反应中间产物吸附, 拓扑化学转变, 全电解水制氢

Abstract:

The underlying spin-related mechanism remains unclear, and the rational manipulation of spin states is challenging due to various spin configurations under different coordination conditions. Therefore, it is urgent to study spin-dependent oxygen evolution reaction (OER) performance through a controllable method. Herein, we adopt a topochemical reaction method to synthesize a series of selenides with eg occupancies ranging from 1.67 to 1.37. The process begins with monoclinic-CoSeO3, featuring a distinct laminar structure and Co-O6 coordination. The topochemical reaction induces significant changes in the crystal field's intensity, leading to spin state transitions. These transitions are driven by topological changes from a Co-O-Se-O-Co to a Co-Se-Co configuration, strengthening the crystalline field and reducing eg orbital occupancy. This reconfiguration of spin states shifts the rate-determining step from desorption to adsorption for both OER and the hydrogen evolution reaction (HER), reducing the potential-determined step barrier and enhancing overall catalytic efficiency. As a result, the synthesized cobalt selenide exhibits significantly enhanced adsorption capabilities. The material demonstrates impressive overpotentials of 35 mV for HER, 250 mV for OER, and 270 mV for overall water splitting, indicating superior catalytic activity and efficiency. Additionally, a negative relation between eg filling and OER catalytic performance confirms the spin-dependent nature of OER. Our findings provide crucial insights into the role of spin state transitions in catalytic performance.

Key words: Spin state configuration, eg orbital occupancy, Intermediates adsorption, Topochemical transformation, Overall water splitting