催化学报 ›› 2024, Vol. 66: 53-75.DOI: 10.1016/S1872-2067(24)60126-9
宋龙a, 迟京起a,*(), 唐俊恒a, 刘晓斌a,c, 肖振宇a,b, 吴则星a,b, 王磊a,b,*(
)
收稿日期:
2024-07-10
接受日期:
2024-08-28
出版日期:
2024-11-18
发布日期:
2024-11-10
通讯作者:
*电子信箱: chijingqi@qust.edu.cn (迟京起),inorchemwl@126.com (王磊).
基金资助:
Long Songa, Jingqi Chia,*(), Junheng Tanga, Xiaobin Liua,c, Zhenyu Xiaoa,b, Zexing Wua,b, Lei Wanga,b,*(
)
Received:
2024-07-10
Accepted:
2024-08-28
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: About author:
Jingqi Chi received her B.S. degree and Ph.D. degree from the State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China). She is currently an associate professor at Qing dao University of Science and Technology. Her research interests focus on the design and synthesis of transition metal-based nanostructures and porous MOFs materials for electrochemical applications.Supported by:
摘要:
氢能具有高热值和零排放的优势, 因此氢能成为解决能源短缺、取代传统化石能源的主要候选能源. 电解水制氢作为重要的绿色制氢技术, 尤其是利用可再生能源转化的电力制氢, 具有非常广阔的市场前景. 目前, 大部分的电解水体系采用的是纯水作为电解液, 忽略了储量丰富的海水资源. 然而, 海水成分极为复杂, 高浓度氯离子引发的竞争性氯氧化副反应(COR)不仅会产生腐蚀性更强的次氯酸根(ClO-), 还会严重影响析氧反应(OER)的活性和选择性. 因此, 开发耐腐蚀、高效的海水基电催化剂迫在眉睫.
本文首先总结了高浓度氯离子引起阳极催化剂腐蚀的过程与机理. 随后, 根据上述问题提出了四种调控策略, 具体包含构建选择性OER位点、抗腐蚀设计、小分子氧化反应(SMOR)取代OER和电解质调制. 其中, 构建选择性OER位点、SMOR取代OER以及电解质调制中的碱性设计能够有效抑制阳极COR的发生, 提高OER的选择性. 由于天然海水电解过程中会不可避免的产生ClO-腐蚀催化剂, 因此概括了阳极的耐腐蚀设计策略, 如调控催化剂的电子分布、原位产生缓冲层和设计不对称电解槽等, 有效缓解ClO-对阳极的腐蚀. 为进一步指导高效、耐腐蚀海水基电催化剂的设计与合成, 按照金属氢氧化物、金属氧化物、金属磷化物、金属硫化物/硒化物及其他类型电催化剂对近期报道的海水基电催化剂进行了分类和总结. 通过原位表征和密度泛函理论(DFT)研究并揭示其中的催化机理, 探究高选择性和稳定性的真正原因. 这些发现为过渡金属电催化剂和电解槽的合理设计提供了新的见解. 在可预见的未来, 可再生能源驱动的海水电解制氢是实现新旧能源转换的关键.
最后, 本文对实现工业海水电解进行了展望: (1) 健全直接海水电解的普适性理论来指导开发高活性和选择性的OER催化剂; (2) 开发和集成机器学习算法与自动化测试平台, 筛选具有高活性的经济型催化剂; (3) 采用简单的改性策略, 同步提升电解槽两端催化剂活性促进整体电解海水制氢; (4) 将阳极材料再生技术与电解槽的模块化设计相结合, 提高经济可行性. 希望本文能够为构建高选择性和耐腐蚀性的OER催化剂提供借鉴.
宋龙, 迟京起, 唐俊恒, 刘晓斌, 肖振宇, 吴则星, 王磊. 高效海水电解和抑制氯化物氧化的阳极设计原则[J]. 催化学报, 2024, 66: 53-75.
Long Song, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Zexing Wu, Lei Wang. Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation[J]. Chinese Journal of Catalysis, 2024, 66: 53-75.
Fig. 3. (a) Volcano curve of CER (gray) and OER (black) in RuO2 (110). The length of the line (dashed line) corresponds to the result of standard deviation in linear scaling relation [37]. Reprinted with permission from Ref. [37]. Copyright 2014, John Wiley and Sons. (b) Schematic illustration of selective oxidation mechanism at the edge of clusters. (c) Dem tests of CoPi (left) and NiBi (right) films [38]. Reprinted with permission from Ref. [38]. Copyright 2019, American Chemical Society. (d) d-Band center comparison of Co 3d orbit. (e) Schematic illustration of synergistic effect between multiphase interfaces caused by Ru and Co [39]. Reprinted with permission from Ref. [39]. Copyright 2023, American Chemical Society. (f) OOH* coverage intensity changes with voltage. (g) Schematic illustration of chloride resistance and OER mechanism in alkaline seawater [40]. Reprinted with permission from Ref. [40]. Copyright 2023, John Wiley and Sons.
Doping sites of RuO2 | ηOER (eV) | ηCER (eV) |
---|---|---|
Pure RuO2 | 0.48 (HOO∗) | 0.36 (ClO∗) |
Cu-doped RuO2 (cus) | 1.11 (O∗) | 0.50 (Cl∗) |
Cu-doped RuO2 (br) | 0.32 (HOO∗) | 0.05 (Cl∗) |
Cu-doped RuO2 (ss1) | 0.55 (HOO∗) | 0.40 (ClO∗) |
Cu-doped RuO2 (ss2) | 0.50 (HOO∗) | 0.33 (ClO∗) |
Table 1 The theoretical overpotentials of OER (ηOER) and CER (ηCER) at different doping sites of RuO2 (110) (Through CET pathway) [41]. Reprinted with permission from Ref. [41]. Copyright 2018, The Electrochemical Society.
Doping sites of RuO2 | ηOER (eV) | ηCER (eV) |
---|---|---|
Pure RuO2 | 0.48 (HOO∗) | 0.36 (ClO∗) |
Cu-doped RuO2 (cus) | 1.11 (O∗) | 0.50 (Cl∗) |
Cu-doped RuO2 (br) | 0.32 (HOO∗) | 0.05 (Cl∗) |
Cu-doped RuO2 (ss1) | 0.55 (HOO∗) | 0.40 (ClO∗) |
Cu-doped RuO2 (ss2) | 0.50 (HOO∗) | 0.33 (ClO∗) |
Fig. 5. (a) The calculated adsorption energy of Cl* intermediate [45]. Reprinted with permission from Ref. [45]. Copyright 2023, American Chemical Society. Site-dependent PDOSs of (b) Co-3d and (c) P-3p [46]. Reprinted with permission from Ref. [46]. Copyright 2023, John Wiley and Sons. (d) Bader charge diagrams of symmetric Co-N4 and asymmetric Co-N3P1 models [47]. Reprinted with permission from Ref. [47]. Copyright 2022, John Wiley and Sons. (e) In-situ Raman spectra of Ni2P and CoFe-Ni2P. (f) The adsorption energy of Cl* and OH* on Ni sites of different catalysts [48]. Reprinted with permission from Ref. [48]. Copyright 2023, John Wiley and Sons. (g) Ni-O-Fe on heterogeneous interface composed of Ni-BDC/NM88B (Fe) [49]. Reprinted with permission from Ref. [49]. Copyright 2024, John Wiley and Sons. (h) Schematic illustration of lattice Cl induced repulsion mechanism in seawater. (i) The OER Faradaic efficiency of Co(OH)2 and Co2(OH)3Cl in 1.0 mol L-1 KOH + 0.6 mol L-1 NaCl electrolyte (1.83 V) [12]. Reprinted with permission from Ref. [12]. Copyright 2022, John Wiley and Sons.
Fig. 6. Schematic illustration of oxide-anion double-layer chloride repellent strategy (a) and corresponding formation mechanism in seawater (b) [52]. Reprinted with permission from Ref. [52]. Copyright 2024, Elsevier. (c) Reaction mechanism of NiFeOOH-TCNQ and NiFeOOH-S-TCNQ [53]. Reprinted with permission from Ref. [53]. Copyright 2023, John Wiley and Sons. (d) Schematic illustration of indirect chloride repulsion mechanism of Lewis acid layer. (The orange arrow represents the direction of external electric field (E). (e) Measured OH- concentration and theoretical concentration of excess OH- required to resist Cl-. (f) XPS spectra of Cl 2p after stability tests. (g) OER polarization curve of as-prepared catalysts in natural seawater [54]. Reprinted with permission from Ref. [54]. Copyright 2023, Springer Nature.
Fig. 8. (a) Schematic illustration of complex diffusion and Cl- migration of anode feed in AEM electrolyzers. (b) Corresponding durability test and Faradaic Efficiency [58]. Reprinted with permission from Ref. [58]. Copyright 2023, American Chemical Society. (c) Chloride repellent design of asymmetric electrolyzers with sodium ion exchange membrane and (d) Corresponding chronopotentiometric curve at 100 mA cm-2 (Inset is the photo after adding AgNO3 solution) [59]. Reprinted with permission from Ref. [59]. Copyright 2023, Springer Nature. (e) Purification and migration process of water [63]. Reprinted with permission from Ref. [63]. Copyright 2022, Springer Nature.
Fig. 10. (a) LSV curves of OER and SMOR in the water splitting [64]. Reprinted with permission from Ref. [64]. Copyright 2022, John Wiley and Sons. (b) Schematic illustration of electrochemical degradation of UOR in urea wastewater [67]. Reprinted with permission from Ref. [67]. Copyright 2020, American Chemical Society. (c) Schematic illustration of platinum wrapped in several layers of graphene. (d) The composition of the oxidation product fraction of glycerol during electrolysis with Pt-in-VGCC as the working electrode. (60 °C) [68]. Reprinted with permission from Ref. [68]. Copyright 2019, John Wiley and Sons. LSV curves of the MOR-assisted seawater electrolysis (e) and corresponding chronopotentiometric curves at 10 mA cm-2 in alkaline natural seawater (f) [69]. Reprinted with permission from Ref. [69]. Copyright 2014, John Wiley and Sons.
Fig. 12. (a) The Pourbaix diagram for simulated seawater electrolytes. (b) Prediction of the maximum allowable overpotential without side reaction (CER) during OER in seawater [73]. Reprinted with permission from Ref. [73]. Copyright 2016, John Wiley and Sons. (c) Faradaic efficiency of 60Fe/NF (The illustration shows the synthesis process of 60Fe/NF) [76]. Reprinted with permission from Ref. [76]. Copyright 2023, John Wiley and Sons. (d) Overpotentials for the COR and OER on EMD-400 at current density of 10 mA cm-2. FEs of COR calculated based on ClO- in electrolyte after electrolysis for IrO2 (e) and EMD-400 (f) [77]. Reprinted with permission from Ref. [77]. Copyright 2023, The Electrochemical Society. (g) Polarization curves of NCFPO/C@CC in alkaline seawater. (h) The concentration of active chloride changes in NaCl and NaCl + KOH electrolyte with NCFPO/C@CC as anode (Inset: the color change of solution after adding KI) [29]. Reprinted with permission from Ref. [29]. Copyright 2019, American Chemical Society.
Fig. 13. (a) Schematic illustration of oxyacid radical protecting metal substrate from Cl- corrosion [80]. Reprinted with permission from Ref. [80]. Copyright 2021, John Wiley and Sons. (b) Inductively coupled plasma optical emission spectra of phosphorus dissolved after different cycles [82]. Reprinted with permission from Ref. [82]. Copyright 2021, John Wiley and Sons. (c) Schematic illustration of chloride resistance effect of MoO42- [85]. Reprinted with permission from Ref. [85]. Copyright 2023, Springer Nature. (d) Schematic illustration of reducing Cl- adsorption and (e) TOF-SIMS depth profiles of Cl- by weakening ion concentration exchange process in seawater [84]. Reprinted with permission from Ref. [84]. Copyright 2024, Springer Nature. Schematic illustration of chloride repulsion mechanism realized by surface chloride immobilization (SCI) strategy (f) and the surface model according to the dynamic simulation and experimental results (g). Polarization curves (h) and durability tests (i) of NiFe LDH@Ag in alkaline saline electrolyte and alkaline seawater, respectively [89]. Reprinted with permission from Ref. [89]. Copyright 2024, John Wiley and Sons.
Electrocatalyst | Overpotential [η(mA cm-2)] (η100) | Ref. |
---|---|---|
HCl-c-Ni-Fe | 240 mV | [ |
Ni-Fe LDH | 247 mV | [ |
S-(Ni-Fe) OOH | 300 mV | [ |
Ag/Ni-Fe LDH | 303 mV | [ |
NiFe-LDH@FeNi2S4 | 250 mV | [ |
NiIr LDH | 286 mV | [ |
Ni-Fe-Al-Co LDHs | 220 mV | [ |
SNiMoO4@NiFe-LDH/NF | 315 mV | [ |
Co-Fe LDHs/Pt | 300 mV | [ |
CoFeNi-LDH | 282 mV | [ |
MnOx/NiFe-LDH/NF | 276 mV | [ |
CrO42--NiFe LDH/Cr2O3/NF | 310 mV | [ |
Ce-NiFe LDH/NF | 270 mV | [ |
2D/1D NiV-BLDH/NiCoP/NF | 280 mV | [ |
N-CDs/NiFe-LDH/NF | 340 mV | [ |
NiCo@NiFe LDH | 222 mV | [ |
B-Co2Fe LDH | 310 mV | [ |
Li-NiFe-LDH | 319 mV | [ |
Ag/NiFeRu LDH | 220 mV | [ |
CoP@NiFe LDH/NF | 245 mV | [ |
Ru/Mn-NiFe LDH | 210 mV | [ |
Table 2 Performance comparison of LDH and its derivatives.
Electrocatalyst | Overpotential [η(mA cm-2)] (η100) | Ref. |
---|---|---|
HCl-c-Ni-Fe | 240 mV | [ |
Ni-Fe LDH | 247 mV | [ |
S-(Ni-Fe) OOH | 300 mV | [ |
Ag/Ni-Fe LDH | 303 mV | [ |
NiFe-LDH@FeNi2S4 | 250 mV | [ |
NiIr LDH | 286 mV | [ |
Ni-Fe-Al-Co LDHs | 220 mV | [ |
SNiMoO4@NiFe-LDH/NF | 315 mV | [ |
Co-Fe LDHs/Pt | 300 mV | [ |
CoFeNi-LDH | 282 mV | [ |
MnOx/NiFe-LDH/NF | 276 mV | [ |
CrO42--NiFe LDH/Cr2O3/NF | 310 mV | [ |
Ce-NiFe LDH/NF | 270 mV | [ |
2D/1D NiV-BLDH/NiCoP/NF | 280 mV | [ |
N-CDs/NiFe-LDH/NF | 340 mV | [ |
NiCo@NiFe LDH | 222 mV | [ |
B-Co2Fe LDH | 310 mV | [ |
Li-NiFe-LDH | 319 mV | [ |
Ag/NiFeRu LDH | 220 mV | [ |
CoP@NiFe LDH/NF | 245 mV | [ |
Ru/Mn-NiFe LDH | 210 mV | [ |
Fig. 14. (a) The OER activity, stability, and solubility of RuO2, IrO2, Ru and Ir [116]. Reprinted with permission from Ref. [116]. Copyright 2020, John Wiley and Sons. (b) Simplified Pourbaix diagram of Mn in aqueous solution [117]. Reprinted with permission from Ref. [117]. Copyright 2012, Royal Society of Chemistry. (c) Ratio of adsorption energies of HOO* and HO* intermediates on various oxides (HOO* and HO* adsorption energy scalar relationship) [122]. Reprinted with permission from Ref. [122]. Copyright 2021, John Wiley and Sons. Schematic diagram of the concurring effects (d), LSV curves (e) and Tafel plots (f) of MnO2- and Mn2O3-based electrodes in alkaline seawater [123]. Reprinted with permission from Ref. [123]. Copyright 2021, Elsevier. (g) Chronoamperometry curves (10 and 100 mA cm-2) [125]. Reprinted with permission from Ref. [125]. Copyright 2019, John Wiley and Sons.
Fig. 15. (a) Schematic diagram of highly selective oxidation of seawater by MoO3@CoO/CC, and (b) the formation energy of chloride on the corresponding surface [132]. Reprinted with permission from Ref. [132]. Copyright 2024, Springer Nature. (c) High-resolution XPS of Co 2p among different thickness of Co3O4. (d) HER polarization curves of Cr2O3-CoOx and comparison samples in natural seawater. Measured pH values (e), the theoretical concentration of excess OH- required to resist Cl- (f) and XRD after operating at 100?mA?cm-2 for 2 h of CoOx and Cr2O3-CoOx anode (g) [54]. Reprinted with permission from Ref. [54]. Copyright 2023, Springer Nature. ?(h) Pourbaix plots of Fe in solutions with different concentrations of Fe ions at 25 °C (1 × 10-8, 1 × 10-5, 1 × 10-2, and 10 mol) [122]. Reprinted with permission from Ref. [122]. Copyright 2021, John Wiley and Sons. (i) DOS of Fe3O4, Fe OOH/Fe3O4, and Fe(Cr)OOH/Fe3O4 [92]. Reprinted with permission from Ref. [92]. Copyright 2022, Elsevier. D-band center values (j) and free energy (k) of Cl- adsorption on Ru/P-Fe3O4@IF, P-Fe3O4@IF and Fe3O4@IF [137]. Reprinted with permission from Ref. [137]. Copyright 2024, American Chemical Society.
Fig. 16. Schematic illustration of the AEM (a) and LOM (b). (c) Free energy profiles between AEM and LOM. (d) Schematic band diagrams of RP-Sr75 [149]. Reproduced from Ref. [149] with permission from Wiley, Copyright 2023. (e) Free energy profiles of NiFeP-O/NiOOH and NiOOH [171]. Reproduced from Ref. [171] with permission from Royal Society of Chemistry, Copyright 2023. The Bader charge numbers of atoms in Ni2Pv (f), Fe-Ni2P (g), and Fe-Ni2Pv (h). (i) PDOS of Ni 3d. (j) Schematic diagram of Ni2Pv adsorbing OER intermediate to form (Fe)NiOOH/Ni2Pv. In situ Raman spectroscopy measurements of Fe-Ni2Pv (k) and Ni2P (l) toward OER in 1.0 mol L-1 KOH seawater [174]. Reproduced from Ref. [174] with permission from Wiley, Copyright 2023.
Electrocatalyst | Substrate | Overpotential [η(mA cm-2)] (η10) | Ref. |
---|---|---|---|
CoFe2O4 | NF | 200 mV | [ |
CoNiWFeVOx | CC | 270 mV | [ |
NiCo2O4 | CC | 293 mV | [ |
Ru-CoOx/NF | NF | 220 mV | [ |
1D-Cu@Co-CoO/Rh | 1D-Cu | 200 mV | [ |
Mn0.25Ni0.75O | NF | 266 mV | [ |
RuO2@CC | CC | 600 mV | [ |
NiMoFe/NM | NM | 340 mV | [ |
Co/P-Fe3O4@IF | IF | 250 mV | [ |
RuNi‐Fe2O3/IF | IF | 580 mV | [ |
PtOx-NiOn/NF | NF | 390 mV | [ |
Fe0.01&Mo-NiO | NiO | 308 mV | [ |
NixCryO | CP | 370 mV | [ |
Cu2O-CoO/CF | CF | 286 mV | [ |
FNE300 | NF | 231 mV | [ |
Fe1/Mn NiO | NiO | 290 mV | [ |
(FeNiMo)O2/NF | NF | 250 mV | [ |
Ir1/Ni1.6Mn1.4O4 | — | 330 mV | [ |
(NiFe)C2O4/NF | NF | 320 mV | [ |
Table 3 Performance comparison of multi-metal oxide electrocatalysts.
Electrocatalyst | Substrate | Overpotential [η(mA cm-2)] (η10) | Ref. |
---|---|---|---|
CoFe2O4 | NF | 200 mV | [ |
CoNiWFeVOx | CC | 270 mV | [ |
NiCo2O4 | CC | 293 mV | [ |
Ru-CoOx/NF | NF | 220 mV | [ |
1D-Cu@Co-CoO/Rh | 1D-Cu | 200 mV | [ |
Mn0.25Ni0.75O | NF | 266 mV | [ |
RuO2@CC | CC | 600 mV | [ |
NiMoFe/NM | NM | 340 mV | [ |
Co/P-Fe3O4@IF | IF | 250 mV | [ |
RuNi‐Fe2O3/IF | IF | 580 mV | [ |
PtOx-NiOn/NF | NF | 390 mV | [ |
Fe0.01&Mo-NiO | NiO | 308 mV | [ |
NixCryO | CP | 370 mV | [ |
Cu2O-CoO/CF | CF | 286 mV | [ |
FNE300 | NF | 231 mV | [ |
Fe1/Mn NiO | NiO | 290 mV | [ |
(FeNiMo)O2/NF | NF | 250 mV | [ |
Ir1/Ni1.6Mn1.4O4 | — | 330 mV | [ |
(NiFe)C2O4/NF | NF | 320 mV | [ |
Electrocatalyst | Substrate | Overpotential [η (mA cm-2)] (η100) | Ref. | |
---|---|---|---|---|
cRu-X’Ni3N | NF | 477 mV | [ | |
Au-Gd-Co2B@TiO2 | TiO2 NS | 78 mV | [ | |
NixFeyN@C/NF | NF | 95 mV | [ | |
S,P-(Ni,Mo,Fe)OOH/Ni Mo P | wood aerogel | 185 mV | [ | |
NiSA-NiPi/MoS2 NSs | TiO2 NS | 320 mV | [ | |
NiMoN@NiFeN | NF | 286 mV | [ | |
NC-Ni3Nm/Fe3Nm | NF | 365 mV | [ | |
Co-N,P-HCS | HCS | 206 mV | [ | |
MIL-(IrNiFe)@NF | NF | 79 mV | [ | |
Ni(OH)2/L-LFP | L-LFP | 237 mV | [ | |
NiRu-PTA/NF | NF | 350 mV | [ | |
Ru@CoNi-MOF | NF | 480 mV | [ | |
ZnFe-BDC-0.75 | NF | 308 mV | [ | |
MoC-Mo2C/CNTs | CNTs | 370 mV | [ | |
Ni-BDC/NM88B(Fe) | NF | 295 mV | [ | |
Fe-Ni-O-N | IF | 250 mV | [ | |
NC-Ni3Nm/Fe3Nm | NF | 581 mV | [ | |
RuO2-Ti3C2/NF | NF | 378 mV | [ | |
ZIF67-600Ar | GF | 670 mV | [ |
Table 4 OER performance comparison of electrocatalysts.
Electrocatalyst | Substrate | Overpotential [η (mA cm-2)] (η100) | Ref. | |
---|---|---|---|---|
cRu-X’Ni3N | NF | 477 mV | [ | |
Au-Gd-Co2B@TiO2 | TiO2 NS | 78 mV | [ | |
NixFeyN@C/NF | NF | 95 mV | [ | |
S,P-(Ni,Mo,Fe)OOH/Ni Mo P | wood aerogel | 185 mV | [ | |
NiSA-NiPi/MoS2 NSs | TiO2 NS | 320 mV | [ | |
NiMoN@NiFeN | NF | 286 mV | [ | |
NC-Ni3Nm/Fe3Nm | NF | 365 mV | [ | |
Co-N,P-HCS | HCS | 206 mV | [ | |
MIL-(IrNiFe)@NF | NF | 79 mV | [ | |
Ni(OH)2/L-LFP | L-LFP | 237 mV | [ | |
NiRu-PTA/NF | NF | 350 mV | [ | |
Ru@CoNi-MOF | NF | 480 mV | [ | |
ZnFe-BDC-0.75 | NF | 308 mV | [ | |
MoC-Mo2C/CNTs | CNTs | 370 mV | [ | |
Ni-BDC/NM88B(Fe) | NF | 295 mV | [ | |
Fe-Ni-O-N | IF | 250 mV | [ | |
NC-Ni3Nm/Fe3Nm | NF | 581 mV | [ | |
RuO2-Ti3C2/NF | NF | 378 mV | [ | |
ZIF67-600Ar | GF | 670 mV | [ |
|
[1] | 杨祥龙, 汪圣尧, 陈婷, 杨楠, 江开, 汪佩, 李淑, 丁星, 陈浩. Cl-诱导的含氧空位原子层厚Bi2WO6的可控合成及其深度氧化NO性能[J]. 催化学报, 2021, 42(6): 1013-1023. |
[2] | 李晓良, 徐浩, 延卫. 新型Ti/TiOxHy/Sb-SnO2电极上苯胺电化学氧化反应[J]. 催化学报, 2016, 37(11): 1860-1870. |
[3] | 高典楠;王胜;张纯希;袁中山;王树东. 氯离子及水蒸气对Pd/Al2O3催化剂甲烷燃烧性能的影响[J]. 催化学报, 2008, 29(12): 1221-1225. |
[4] | 廉红蕾;潘维成;贾明君;蒋大振;张文祥;吴通好. ZnO负载纳米金催化剂上的低温水煤气变换反应[J]. 催化学报, 2005, 26(11): 999-1004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||