催化学报 ›› 2025, Vol. 69: 163-175.DOI: 10.1016/S1872-2067(24)60198-1

• 论文 • 上一篇    下一篇

构建用于工业电流密度下高效电解尿素辅助制氢的Ni2P/CoP界面催化剂

陆博荣a,1, 吕春梅a,1, 谢颖d, 朱凯a, 叶克a,b,*(), 李晓锦b,c,*()   

  1. a哈尔滨工程大学材料科学与化学工程学院, 超轻材料与表面技术教育部重点实验室, 黑龙江哈尔滨 150001
    b中国科学院青岛生物能源与过程研究所, 山东青岛 266101
    c山东能源研究院, 山东青岛 266101
    d黑龙江大学化学与材料科学学院, 黑龙江哈尔滨 150080
  • 收稿日期:2024-09-07 接受日期:2024-11-12 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: yeke@hrbeu.edu.cn (叶克), lixj@qibebt.ac.cn (李晓锦)
  • 作者简介:第一联系人:

    1共同第一作者.

  • 基金资助:
    国家重点研发计划(2021YFB4001700);山东省自然科学基金-重大基础研究项目(ZR2022ZD10);青岛市自然科学基金(23-2-1-221-zyyd-jch);QIBEBT国际合作项目(QIBEBT ICP202303);青岛新能源山东省实验室开放课题(QNESL OP 202303)

Construction of Ni2P/CoP interface for highly efficient electrolysis of urea-assisted hydrogen production at industrial current densities

Borong Lua,1, Chunmei Lva,1, Ying Xied, Kai Zhua, Ke Yea,b,*(), Xiaojin Lib,c,*()   

  1. aKey Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
    bQingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
    cShandong Energy Institute, Qingdao 266101, Shandong, China
    dKey Laboratory of Functional Inorganic Material Chemistry of Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2024-09-07 Accepted:2024-11-12 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: yeke@hrbeu.edu.cn (K. Ye), lixj@qibebt.ac.cn (X. Li).
  • About author:First author contact:

    1 Contributed equally to this work.

  • Supported by:
    National High Technology Research and Development Program of China(2021YFB4001700);Major Fundamental Research Program of Natural Science Foundation of Shandong Province(ZR2022ZD10);Qingdao Natural Science Foundation(23-2-1-221-zyyd-jch);QIBEBT INTERNATIONAL COOPERATION Project(QIBEBT ICP202303);Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202303)

摘要:

尿素氧化反应(UOR)是尿素辅助电解水制氢的阳极反应, 可以替代水电解中的阳极析氧反应, 在低能耗制氢的同时对尿素废水进行降解. 因此, 近年来UOR作为一种具有前景的可持续清洁能源技术, 受到了广泛关注. 然而由于UOR存在复杂的反应过程, 动力学缓慢以及催化剂稳定性较差等问题, 需要开发具有高活性和高稳定性的催化剂. 界面化学调控策略被认为是制备UOR催化剂的有效方法.然而, 传统的界面催化剂通常受限于各组分本身的固有活性和不兼容性, 而且界面间不规则的电荷分布和缓慢的电荷转移速率严重限制了UOR的活性.

本文报道了一种Ni2P/CoP界面催化剂, 首先通过密度泛函理论(DFT)计算预测Ni2P/CoP界面间电荷自发地从CoP转移到Ni2P, 并且具有电荷调节能力, 低Gibbs自由能的潜在反应决定步骤则证明了界面的构建可能提高其催化活性. 随后通过水热、溶剂热和磷化法合成了Ni2P/CoP催化剂. X射线衍射、扫描电镜和透射电镜等结果表明Ni2P/CoP被成功合成, 并且在高分辨透射电镜图中存在明显的晶界特征, 结合DFT预测的功函数(Ф)和X射线吸收精细结构谱的分析结果, 表明Ni2P/CoP界面的成功构建. 原位电化学阻抗谱、准原位X射线光电子能谱和准原位拉曼光谱结果表明, Ni2P/CoP通过界面间形成的内置电场, 加速电荷定向转移, 促进UOR过程. 采用原位电化学光学显微镜评估了Ni2P/CoP在析氢反应过程中的气体释放程度, 结果表明, Ni2P/CoP具有快速的气体逸出速率. 分别在6 mol L‒1 KOH + 0.5 mol L‒1尿素和尿液(6 mol L‒1 KOH)的电解液中, 使用Ni2P/CoP同时作为阴极和阳极分别在尿素电解(UOR||HER)和人体尿液电解(HUOR||HER)体系中进行计时电位测试, 在Ni2P/CoP在500 mA cm−2电流密度下, 分别以1.70和1.90 V的较小恒定电池电压下持续工作120和50 h, 表现出高活性和稳定性. 通过紫外-可见吸收光谱和二乙酰一肟-安替比林法(国家标准方法)评估了Ni2P/CoP对尿素降解的效果, 结果表明, Ni2P/CoP的尿素降解率为73.1%, 表明Ni2P/CoP具有电化学降解富含尿素废水的潜力.

综上所述, 本文通过DFT预测, 合理的使用界面化学调制策略, 优化了Ni2P/CoP催化剂界面间电荷分布, 为工业级大规模尿素废水电解辅助制氢和用于绿色能源转化催化剂的开发提供新思路.

关键词: 界面化学策略, 理论预测, 先进界面构造, 定向电荷转移, 尿素氧化反应

Abstract:

Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction (UOR). However, conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves, and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR. Therefore, we optimized and designed a Ni2P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity. Density functional theorycalculations first predict a regular charge transfer from CoP to Ni2P, which creates a built-in electric field between Ni2P and CoP interface. Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity. Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni2P/CoP interface. Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs. RHE, at 10 mA cm-2, respectively. Furthermore, Ni2P/CoP achieves industrial-grade current densities (500 mA cm-2) at 1.75 V and 1.87 V in the overall urea electrolyzer (UOR||HER) and overall human urine electrolyzer (HUOR||HER), respectively, and demonstrates considerable durability.

Key words: Interface chemical strategy, Theoretical predictions, Advanced interface construction, Directed charge transfer, Urea oxidation reaction