催化学报 ›› 2025, Vol. 70: 341-352.DOI: 10.1016/S1872-2067(24)60226-3

• 论文 • 上一篇    下一篇

原子分散的Ba位点作为电子促进剂增强Cu助催化剂的光还原CO2性能

张丽娜, 刘国威, 邓欣妍, 李秋叶*(), 杨建军*()   

  1. 河南大学纳米材料工程研究中心, 河南开封 475000
  • 收稿日期:2024-10-21 接受日期:2024-12-23 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: qiuyeli@henu.edu.cn (李秋叶),yangjianjun@henu.edu.cn (杨建军).
  • 基金资助:
    河南省高校创新研究团队项目(21IRTSTHN009);河南省科学技术基金(225200810051);河南省自然科学基金(222300420406)

Atomically dispersed Ba sites as electron promoters to enhance the performance for photoreduction of CO2

Lina Zhang, Guowei Liu, Xinyan Deng, Qiuye Li*(), Jianjun Yang*()   

  1. National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, Henan, China
  • Received:2024-10-21 Accepted:2024-12-23 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: qiuyeli@henu.edu.cn (Q. Li),yangjianjun@henu.edu.cn (J. Yang).
  • Supported by:
    Program for Innovative Research Team in University of Henan Province(21IRTSTHN009);Science and Technology Fund of Henan Province(225200810051);Natural Science Foundation of Henan Province(222300420406)

摘要:

化石能源的燃烧导致大气中CO2浓度持续上升, 由此引发的温室效应严重影响人类生存环境. 因此, 降低大气中的CO2浓度是一个全球性的挑战. 为了应对这一问题, 研究者们致力于加速CO2的转化, 特别是通过光还原技术将CO2转化为CO和碳氢化合物. 该技术不仅能够缓解温室效应, 还为解决能源危机提供了新的途径. 目前, 应用于光催化还原CO2的半导体光催化剂有很多, 其中缺陷态TiO2(TiO2)由于其优异的光电化学性质和电子结构而备受关注. 然而, 单一的缺陷态TiO2缺乏CO2吸附和活化位点, 导致光还原CO2活性较低. 因此, 设计一种高效的缺陷态TiO2光催化剂用来提升CO2还原性能是至关重要的.

本文通过光沉积的方法合成了Cu, Ba和CuBa修饰的TiO2-SBO光催化剂(Cu/TiO2-SBO, Ba/TiO2-SBO和CuBa/TiO2-SBO). X射线吸收谱和高分辨透射电镜结果表明, Cu和Ba物种是以原子分散的形式存在于缺陷态TiO2表面上. 原位X射线光电子能谱、CO原位红外光谱和光电性能测试结果表明, 氧空位和CuBa双金属活性位协同促进了光诱导载流子的分离能力. 此外, 引入金属Ba作为电子供体可调节Cu位点的电子结构, 使光生电子从Ba原子转移到Cu原子上, 从而提高了Cu位点的电子密度并形成了富电子的Cu活性位点, 进而促进CO2分子的活化. 结合原位红外光谱和理论计算表明, Cu1Ba3/TiO2-SBO样品所产生的中间产物强度高于单金属修饰的TiO2-SBO, 证实了CuBa双金属位点更有利于CO2的活化, 从而提高了光催化还原CO2的产率. 同时, Cu/TiO2-SBO和Cu1Ba3/TiO2-SBO对CO2的吸附能分别为0.11和-1.59 eV, 表明Ba的存在显著地增强CO2的吸附能力, 并促进其转化为CO和CH4产物. 此外, 增强的*COOH结合力以及显著降低的CO和*CO中间体的形成能有利于COOH向CO的转化, 有助于CO2高选择性地还原为CO产物. 其中Cu/TiO2-SBO样品光还原CO2的性能和选择性较差, 当担载碱土金属Ba之后, 有效地提高了光催化还原CO2的活性和选择性. 最佳Cu1Ba3/TiO2-SBO将CO2还原为CO和CH4的产率分别为32.0和7.0 µmol g-1 h-1, 分别是单一TiO2-SBO产率的8倍和6倍, 其中CO产物的选择性高达53%.

综上, 本文以光沉积的方法合成了CuBa双金属修饰的TiO2-SBO, 最优的Cu1Ba3/TiO2-SBO样品在光催化还原CO2反应中表现出了优异的活性和选择性. 此外,本文详细阐明了光催化还原CO2的反应机理, 为将CO2高效转化为高附加值产品提供了新思路.

关键词: 缺陷态二氧化钛, CuBa双金属, Cu助催化剂, 光还原CO2, 光催化机理

Abstract:

The highly photocatalytic conversion of CO2 into valuable products is a promising method for mitigating the global greenhouse effect and increasing the energy supply. However, the utilization of electron-deficient active sites to activate CO2 leads to lower photocatalytic efficiency and selectivity. One effective strategy to improve CO2 photoreduction performance is making precise adjustments to the electronic structure of the photocatalyst. Herein, the defective TiO2 modified with Cu, Ba, and CuBa metal sites is synthesized via a simple photo-deposition method and applied for photoreduction of CO2. Among the prepared catalysts, Cu1Ba3/TiO2-SBO (TiO2-SBO: TiO2 with surface and bulk oxygen vacancies) has been demonstrated to possess excellent photocatalytic conversion of CO2, with the activity levels of the CO and CH4 that are 8 and 6 times higher than the bare TiO2-SBO, and the electron selectivity of CO is up to 53%. The results reveal that oxygen vacancies and CuBa bimetallic sites have a synergistic ability to facilitate the separation of photogenerated carriers. Furthermore, the electron-donor Ba metal enables modulation of the electronic structure of Cu co-catalysts, generating electron-rich Cu metal sites that accelerate the activation of CO2. Meanwhile, the theoretical calculations prove that the Cu1Ba3/TiO2-SBO has the stronger CO2 adsorption energy, and its strengthened binding of *COOH and the markedly reduced formation energy of CO and *CO intermediates boost the conversion of COOH to CO and enhance the selectivity of CO. Thereby, the defective TiO2 modified with CuBa bimetal represents a more effective measure for CO2 reduction into valuable products.

Key words: Defective TiO2, CuBa bimetal, Cu co-catalyst, Photoreduction of CO2, Photocatalytic mechanism