催化学报 ›› 2023, Vol. 44: 160-170.DOI: 10.1016/S1872-2067(22)64173-1

• 论文 • 上一篇    下一篇

绿藻来源光脱羧酶McFAP的挖掘及其中短链脂肪酸选择性脱羧机制研究

马云建a,b, 仲宣儒a, 吴斌c, 蓝东明a, 张皓a, Frank Hollmannd,*(), 王永华a,e,*()   

  1. a华南理工大学食品科学与工程学院, 广东广州 510640, 中国
    b澳门科技大学中药质量研究国家重点实验室, 创新药物发现Neher生物物理学实验室, 澳门 999078, 中国
    c华南理工大学生物科学与工程学院, 广东广州 510006, 中国
    d代尔夫特理工大学生物技术系, 代尔夫特, 荷兰
    e广东优酶生物制造研究院有限公司, 广东佛山 528200, 中国
  • 收稿日期:2022-07-15 接受日期:2022-08-31 出版日期:2023-01-18 发布日期:2022-12-08
  • 通讯作者: Frank Hollmann,王永华
  • 基金资助:
    国家杰出青年基金(31725022);国家自然科学基金重点项目(31930084);中国博士后科学基金项目(2020TQ0108);澳门青年学者计划(AM2020024)

A photodecarboxylase from Micractinium conductrix active on medium and short-chain fatty acids

Yunjian Maa,b, Xuanru Zhonga, Bin Wuc, Dongming Lana, Hao Zhanga, Frank Hollmannd,*(), Yonghua Wanga,e,*()   

  1. aSchool of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
    bNeher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
    cSchool of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Guangdong, China
    dDepartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
    eGuangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd, Foshan, Foshan 528200, Guangdong, China
  • Received:2022-07-15 Accepted:2022-08-31 Online:2023-01-18 Published:2022-12-08
  • Contact: Frank Hollmann, Yonghua Wang
  • Supported by:
    National Outstanding Youth Science Foundation of China(31725022);Key Program of Natural Science Foundation of China(31930084);Project funded by China Postdoctoral Science Foundation(2020TQ0108);Macau Young Scholars Program(AM2020024)

摘要:

利用脂肪酸脱羧制备烃类生物燃料是开发可再生能源的有效途径. 相比于传统化学法, 生物酶法具备高效、能耗低及环境友好等优势, 更具有工业应用前景. 光脱羧酶(FAP)是一类专一性强, 催化效率高, 催化过程无需额外添加昂贵辅因子, 仅需利用蓝光即可将脂肪酸转化为烷(烯)烃的光驱动酶, 在烃类生物燃料的高效可持续生物合成领域具有应用潜力. 目前已报道的有偏好催化C12-C20链长脂肪酸的光脱羧酶, 但其底物选择性机制尚未被深入探究.

本文挖掘了来源于绿藻Micractinium conductrix的光脱羧酶McFAP, 并开展了异源表达及制备、酶学性质表征、催化特性及底物选择性机制等研究. 利用全基因合成技术获得了来源于绿藻Micractinium conductrix假定的光脱羧酶基因序列mcfap, 同时构建了N端缺失突变体McFAP-S (缺失1-550位氨基酸). 在大肠杆菌中实现了McFAP-S的异源表达. 重组的McFAP-S对链长为6‒18的饱和直链脂肪酸均有脱羧活性, 偏好中链脂肪酸, 最适底物为正辛酸(C8:0) (转化率>99%). 相同条件下, McFAP全细胞催化软脂酸(C16:0)脱羧的转化率是CvFAP(来源于Chlorella variabilis)的1.7倍.

重组的McFAP-S催化正辛酸脱羧的最适反应温度为40 °C, 孵育6 h后残余酶活力为70.2%; 最适pH值为8.0, 孵育5 d后残余酶活力为65.4%; 对甲醇, DMSO等有机溶剂及Ni2+, Ca2+等金属离子具有良好的耐受性; 4 °C避光条件下储存10 d残余酶活力为76.7%. 考察了不同波长光对McFAP-S酶活力的影响, 结果表明, 红光照射3 h后McFAP-S残余酶活力为97.2%; 在可见光照射下McFAP-S与正辛酸共孵育3 h后残余酶活力> 99%. McFAP-S在30 °C, pH 9.0, 加酶量为60 μmol L‒1的条件下催化正辛酸脱羧, 反应30 min后转化率为95.3%.

构建了McFAP-S三维结构模型, 通过与CvFAP的三维结构对比分析, 推测底物通道口大小对McFAP-S底物选择性有重要影响, 根据二者对不同链长底物结合位置的区别, 设计了突变体S338V, S338L, S338A, L339I, T340A, T340S, McFAP-S338A/L339I/T340S及∆344‒347. 结果表明, S338L仅保留催化软脂酸脱羧活力(是野生型的3.7%); L339I对正庚酸(C7:0)脱羧活力相较于野生型降低了15%, 对月桂酸(C12:0)脱羧活力增加了28%; T340S对正己酸(C6:0)脱羧活力降低了67%; S338A/L339I/T340S对正己酸脱羧活力降低了78%. 以上表明, S338, L339, T340可能是参与该酶底物选择性调控的关键位点.

综上所述, 相较已报道的CvFAP催化特性, McFAP具有偏好中链脂肪酸和脱羧活性更高等优势, 提高光脱羧酶催化中链脂肪酸脱羧生成C5‒C12烷烃的效率, 同时本研究初步阐明了McFAP的底物选择性机制, 可为光脱羧酶的研发及应用提供借鉴, 为阐明光脱羧酶的结构功能关系研究提供一定的基础.

关键词: 光脱羧酶, McFAP, 异源表达, 脂肪酸, 烃类生物燃料

Abstract:

Hydrocarbons are essential base chemicals as energy carriers and starting materials for chemical manufacture. So-called fatty acid photodecarboxylases (FAPs) represent interesting catalysts for the conversion of natural fatty acids into hydrocarbons thereby giving access to alkanes from renewable feedstock. Today, however, only few FAPs are known. In the current study we report a new FAP from the marine organism Micractinium conductrix (McFAP). In contrast to currently known FAPs McFAP exhibits high catalytic activity towards short and medium fatty acids. Recombinant expression and basic biochemical characterisation of this new member of the FAP family is reported.

Key words: Photodecarboxylase, McFAP, Heterologous expression, Fatty acids, Hydrocarbon biofuel