催化学报 ›› 2024, Vol. 56: 104-113.DOI: 10.1016/S1872-2067(23)64578-4

• 论文 • 上一篇    下一篇

CuPc/FeNC双组分催化剂协同催化硝酸盐转化为氨

王毅a,b,1, 王硕a,1, 付云凡a,b, 桑佳琪a,b, 臧一鹏a, 魏鹏飞a, 李合肥a, 汪国雄a,*(), 包信和a   

  1. a中国科学院大连化学物理研究所, 能源材料化学协同创新中心, 大连洁净能源国家实验室, 催化基础国家重点实验室, 辽宁大连116023
    b中国科学院大学能源学院, 北京100049
  • 收稿日期:2023-10-30 接受日期:2023-12-05 出版日期:2024-01-18 发布日期:2024-01-10
  • 通讯作者: *电子信箱: wanggx@dicp.ac.cn (汪国雄).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发项目(2022YFA1504000);国家自然科学基金(22125205);国家自然科学基金(92045302);中央高校基础研究经费(20720220008);洁净能源国家实验室基金(DNL202007);洁净能源国家实验室基金(DNL201923)

Synergistic catalytic conversion of nitrate into ammonia on copper phthalocyanine and FeNC two-component catalyst

Yi Wanga,b,1, Shuo Wanga,1, Yunfan Fua,b, Jiaqi Sanga,b, Yipeng Zanga, Pengfei Weia, Hefei Lia, Guoxiong Wanga,*(), Xinhe Baoa   

  1. aState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bCollege of Energy, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-10-30 Accepted:2023-12-05 Online:2024-01-18 Published:2024-01-10
  • Contact: *E-mail: wanggx@dicp.ac.cn (G. Wang).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2022YFA1504000);National Natural Science Foundation of China(22125205);National Natural Science Foundation of China(92045302);Fundamental Research Funds for the Central Universities(20720220008);Dalian National Laboratory for Clean Energy(DNL202007);Dalian National Laboratory for Clean Energy(DNL201923)

摘要:

氨(NH3)作为重要的化学品和能源储存介质, 需求量与日俱增. 本文旨在通过电化学硝酸根还原反应(NO3RR), 将NO3转化为NH3, 不仅解决了NO3引起的环境污染问题, 又可以满足对NH3的迫切需求. 然而, NO3RR涉及多个电子和质子转移过程, 其中, NO2是NO3活化转化和深度还原合成NH3的重要中间体. 酞菁铜(CuPc)能够高效地活化转化NO3为NO2, 但在低过电位时无法有效地将NO2还原为NH3, 难以获得较高的氨法拉第效率(FENH3)和分电流密度. 而氮配位的铁单原子催化剂(FeNC)则有较好的NO2吸附活化特性. 因此, 利用双组分催化剂之间的协同作用以实现高效NO3RR的活性和选择性是本文的主要研究思路.

本文设计了CuPc/FeNC串联催化剂, 利用CuPc和FeNC对NO3和NO2的吸附活化能力的差异, 实现了高效的协同催化转化. X射线衍射、高角环形暗场扫描透射电镜、X射线光电子能谱及X射线吸收谱结果表明, FeNC催化剂中Fe原子均匀分布于ZIF-8热解后的基底. 通过将FeNC和CuPc负载于气体扩散电极, 在流动电解池中完成NO3RR. CuPc/FeNC催化剂在较低电势区间中能够实现接近100%的NH3法拉第效率, 同时在−0.57 V vs. RHE时达到273 mA cm-2的NH3分电流密度, 并且在整个电势范围内有效地抑制了NO2-聚集. 与单组分催化剂CuPc和FeNC对比结果表明, 在−0.53 V vs. RHE时, CuPc/FeNC催化剂表现出较高的FE(NH3)/FE(NO2−)比值, 是CuPc催化剂的50倍; 同时CuPc/FeNC催化剂上NH3分电流密度是FeNC催化剂的1.5倍. 进一步研究了NO3-RR中的串联反应机制, 其中FeNC催化剂表现出较高的NO2-RR活性, 并且有效抑制了析氢反应. 此外, CuPc/FeNC催化剂和FeNC催化剂在NO2RR中表现出类似的NH3分电流密度, 这表明在NO3RR中, CuPc/FeNC催化剂性能的提高来源于FeNC位点能够进一步还原CuPc位点产生的NO2-. 理论计算结果表明, FeNC比CuPc表现出更强的NO2-吸附活化能力, 说明NO2在FeNC上更容易进行加氢还原. NO3RR反应全路径分析结果表明, 对于*NO3还原到*NO2过程, CuPc相对于FeNC位点具有明显降低的反应自由能, 说明CuPc有利于NO2的生成; 而FeNC位点在后续的*NO2还原合成*NH3过程中具有更低的反应自由能, 这与实验结果一致. 一系列非原位和原位表征证明了CuPc催化剂在高电位下存在少量金属颗粒析出, 与CuPc催化剂在高电位下NH3分电流密度快速增加结果一致.

综上, 本工作中CuPc和FeNC催化剂之间的协同作用弥补了各自的不足, 通过串联反应机制, 在低过电位下有效增加了NH3的法拉第效率和电流密度, 实现了高效的协同催化转化, 为设计和合成高效催化剂提供了新思路.

关键词: 硝酸根电化学还原为氨, 协同催化转化, 串联催化, 双组分催化剂, 动态现场原位表征

Abstract:

Cu-based catalysts have been extensively studied to enhance the performance of the electrochemical nitrate reduction reaction (NO3RR), while it is still a challenge to balance high ammonia (NH3) current density and Faradaic efficiency. Here, we incorporated nitrogen coordinated iron single atom catalyst (FeNC) with copper phthalocyanine (CuPc), denoted as CuPc/FeNC, for NO3RR. Compared with the two individual catalysts, this two-component catalyst increases NH3 Faradaic efficiency and current density at low overpotentials, achieves efficient synergistic catalytic conversion. Experiments and theoretical calculations reveal that the enhanced electrochemical performance of CuPc/FeNC catalyst comes from the tandem process, in which NO2 is produced on CuPc and then transferred to FeNC and further reduced to NH3. In this exceptional tandem catalyst system, an outstanding NH3 Faradaic efficiency close to 100% was achieved at potentials greater than −0.35 V vs. RHE, coupled with a peak NH3 partial current density of 273 mA cm‒2 at −0.57 V vs. RHE, effectively suppressing NO2 production across the entire potential range. This strategy provides a design platform for the continued advancement of NO3RR catalysts.

Key words: Electrochemical reduction of nitrate, to ammonia, Synergistic catalytic conversion, Tandem catalysis, Two-component catalyst, Operando characterization