催化学报 ›› 2024, Vol. 58: 157-167.DOI: 10.1016/S1872-2067(23)64607-8

• 论文 • 上一篇    下一篇

双聚合物Cd3(C3N3S3)2/Zn3(C3N3S3)2 S型异质结增强光催化产氢性能

杨婷婷, 汪静, 王中辽, 张金锋*(), 代凯*()   

  1. 淮北师范大学, 绿色和精准合成化学及应用教育部重点实验室, 污染物敏感材料与环境修复安徽省重点实验室, 安徽省智能计算与应用重点实验室, 安徽省铝材料工业共性技术研究中心, 安徽淮北235000
  • 收稿日期:2023-10-02 接受日期:2024-01-19 出版日期:2024-03-18 发布日期:2024-03-28
  • 通讯作者: *传真: (0561)3803256; 电子信箱: daikai940@chnu.edu.cn (代凯),jfzhang@chnu.edu.cn (张金锋).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22278169);国家自然科学基金(51973078);安徽省高校优秀科研创新团队(2022AH010028);安徽省教育厅重大项目(2022AH0400680);安徽省质量工程项目(2022sx134)

Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production

Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang*(), Kai Dai*()   

  1. Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, Anhui, China
  • Received:2023-10-02 Accepted:2024-01-19 Online:2024-03-18 Published:2024-03-28
  • Contact: *E-mail: daikai940@chnu.edu.cn (K. Dai),jfzhang@chnu.edu.cn (J. Zhang).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22278169);National Natural Science Foundation of China(51973078);Excellent Scientific Research and Innovation Team of Education Department of Anhui Province(2022AH010028);Major projects of Education Department of Anhui Province(2022AH040068);Anhui Provincial Quality Engineering Project(2022sx134)

摘要:

利用光催化剂将太阳能转化为化学能, 以应对当今社会所面临的环境污染和能源挑战, 是一种极具发展潜力的策略. 因此, 研发高效光催化剂成为当务之急. 在众多光催化剂中, 金属硫化物受到广泛关注. 其中, CdS因其出色的产氢性能而被视为一种具有前景的光催化剂, 并备受关注. 然而, CdS易发生光腐蚀, 导致S2‒阴离子容易被产生的空穴氧化, 从而影响了其光化学稳定性, 限制了其应用. 为解决上述问题, 本课题组尝试用(C3N3S3)3‒代替S2‒合成了不易受光腐蚀且相对稳定的聚合物Cd3(C3N3S3)2(CdTMT), CdTMT是一种对可见光有良好响应的大分子配位聚合物, 在光催化制氢方面表现出较好的催化性能.

本文以八面体CdTMT为基底, 通过生长棒状Zn3(C3N3S3)2(ZnTMT), 利用简便的一步原位水热法制备了不同比例的CdTMT/ZnTMT S型异质结光催化剂. 通过X射线衍射、扫描电镜以及透射电镜对样品的晶体结构、微观形貌以及组成元素进行了表征, 并利用X射线光电子能谱、开尔文探针力显微镜和电子顺磁共振等技术对复合材料的电子传输行为进行了详细分析. 结果表明, 在黑暗状态下, 电子由CdTMT转移到ZnTMT, 当光照时电子由ZnTMT转移到CdTMT, 证实了CdTMT/ZnTMT S型异质结的成功构建. 同时, 拉曼光谱证明了三嗪环的存在. 此外, 考察了纯样品和复合材料的光催化析氢性能. 结果表明, 在光照下S型CdTMT/ZnTMT异质结的光催化析氢效率相较于单一催化剂ZnTMT与CdTMT有显著提升, 最高达到45.24 mmol∙g‒1∙h‒1, 分别是ZnTMT和CdTMT的215.43倍和1.76倍. CdTMT/ZnTMT S型异质结的内建电场、能带弯曲和库仑力以及π共轭轨道之间存在协同作用, 不仅保留了CdTMT导带上电子与ZnTMT价带上空穴的强氧化还原能力, 而且通过重新配置氧化还原活性较低的光生电子和空穴, 实现了更高的电子-空穴分离效率, 从而增强了复合材料的光催化活性. 上述结果与表征和密度泛函理论计算结果一致.

鉴于聚合物体系在自然环境中的无序性, 研究聚合物的电子传递机制仍具有一定的挑战性. 本文通过成功构建双聚合物S型异质结, 在显著优化光催化剂性能的同时, 也为设计聚合物电子转移机制和优化聚合物光催化剂性能提供了新思路.

关键词: S型异质结, 光催化析氢, 电荷转移, ZnTMT, CdTMT

Abstract:

The preparation of S-scheme heterojunctions has attracted considerable attention in the academic community as a highly effective approach to enhance the separation and migration of electrons and holes, thereby significantly improving the catalytic efficiency of photocatalysts. In this work, a novel S-scheme ipolymer heterojunction photocatalyst, Cd3(C3N3S3)2/Zn3(C3N3S3)2 (CdTMT/ZnTMT), which synergy with π-conjugate system, was synthesized using an innovative in-situ hydrothermal method. Through a series of rigorous characterization tests, the formation of an S-scheme heterojunction between CdTMT and ZnTMT was confirmed. Particular emphasis is placed on the effective enhancement of photocatalytic activity of photocatalysts through π-conjugated orbitals and built-in electric field after combining double-organic conjugated polymer-shaped ZnTMT and CdTMT. Performance tests that show the photocatalytic hydrogen evolution performance of the composite was significantly boosted to an impressive 45.24 mmol∙g-1∙h-1, which is 215.43 times that of single catalyst ZnTMT and 1.76 times that of CdTMT. Finally, this paper discusses the possibility and development prospect of double polymer to construct S-scheme heterojunctions to improve the activity of photocatalysts.

Key words: S-scheme, Photocatalytic hydrogen evolution, Charge transfer, ZnTMT, CdTMT