催化学报 ›› 2024, Vol. 61: 54-70.DOI: 10.1016/S1872-2067(24)60012-4
李雨鸥a,b, 王克a,b, 王笑妹a,b, 王子健a,b, 徐晶a,b, 赵梦a,b, 汪啸a,b,*(), 宋术岩a,b,*(
), 张洪杰a,b,c,*(
)
收稿日期:
2024-02-12
接受日期:
2024-03-13
出版日期:
2024-06-18
发布日期:
2024-06-20
通讯作者:
* 电子信箱: 基金资助:
Yuou Lia,b, Ke Wanga,b, Xiaomei Wanga,b, Zijian Wanga,b, Jing Xua,b, Meng Zhaoa,b, Xiao Wanga,b,*(), Shuyan Songa,b,*(
), Hongjie Zhanga,b,c,*(
)
Received:
2024-02-12
Accepted:
2024-03-13
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: About author:
Xiao Wang received his BSc degree in Chemistry in 2008 from Jilin University. Then, he joined the group of Prof. Hongjie Zhang at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), and received his PhD degree in Inorganic Chemistry in 2013. His research focus is primarily on the fabrication of functional inorganic materials for heterogeneous catalytic reactions and energy-related applications.Supported by:
摘要:
随着工业技术的快速发展, 能源短缺与环境污染问题日益凸显, 对人类生活和社会经济发展造成了严重影响. 在这一背景下, 加速能源系统转型、积极开发与利用可再生能源变得至关重要, 成为当前研究领域的热点. 同时, 消除环境中的有毒有害物质也具有较高的研究价值, 对维护生态平衡和人类健康具有重要意义. 催化技术因在去除污染物和能源转换方面具有巨大的应用潜力而备受关注. 其中, 高熵氧化物因其具有多样可调的晶体结构和丰富的表面活性位点, 展现出较好的催化性能, 从而备受研究者关注. 此外, 稀土元素因以其相近的离子半径、独特的电子轨道和可变的氧化态, 常被用作高熵氧化物的组成元素. 通过引入稀土元素, 可以有效改善高熵氧化物的结构和性能. 近年来, 稀土高熵氧化物在催化应用中取得较多的研究成果, 然而却缺少对该方面工作系统全面的综述. 本文旨在系统总结稀土高熵氧化物的结构特点、合成方法及其在催化领域的应用, 以期为该领域的进一步发展提供有益的参考.
本文从结构、合成及应用等方面, 对稀土高熵氧化物在催化领域的研究进展进行了总结. 首先, 详细介绍了钙钛矿型、萤石型和烧绿石型三种类型稀土高熵氧化物的结构特征, 并探讨了结构对催化反应过程的重要影响. 研究表明, 多组分的高熵效应保证了单相固溶体的形成和高温下的催化稳定性, 而晶格畸变效应则促进了氧空位等活性位点的形成, 进而提升了催化活性. 复杂多变的晶体结构导致了离子扩散延迟, 这也使得高熵材料在催化过程中具有优异稳定性. 此外, 揭示了多种元素间的协同作用对催化性能的提升作用. 值得一提的是, 非等摩尔金属成分也可形成高熵氧化物, 为稀土高熵氧化物研究开辟了新的方向. 其次, 讨论了稀土高熵氧化物的合成方法, 主要包括固相反应合成法、喷雾热解法、化学共沉淀法和溶液燃烧法, 合成方法的选择和优化对于建立高熵系统至关重要. 目前, 众多简单快速的合成方法已取代耗时耗力的合成过程, 为稀土高熵氧化物的制备提供了便利. 最后, 重点概述了稀土高熵氧化物在电催化、热催化和光催化中的应用进展, 并详细介绍了多元素可调材料对反应活性的影响. 同时, 指出了稀土高熵氧化物未来发展所面临的挑战, 并提出了相应的应对策略, 以期为高熵系统的理论研究提供有力支撑.
综上, 稀土高熵氧化物因其复杂结构而展现出丰富的潜在催化反应性能, 具有巨大的应用潜力. 未来研究可以加强开发设计、精准调控结构以及深入分析反应机理, 从而提升高熵氧化物的催化性能. 希望本文能够为稀土高熵氧化物催化体系研究提供有益的参考.
李雨鸥, 王克, 王笑妹, 王子健, 徐晶, 赵梦, 汪啸, 宋术岩, 张洪杰. 稀土高熵氧化物用于能源和环境催化[J]. 催化学报, 2024, 61: 54-70.
Yuou Li, Ke Wang, Xiaomei Wang, Zijian Wang, Jing Xu, Meng Zhao, Xiao Wang, Shuyan Song, Hongjie Zhang. Rare earth-incorporated high entropy oxides for energy and environmental catalysis[J]. Chinese Journal of Catalysis, 2024, 61: 54-70.
Fig. 1. (a) The state of the five elements before and after mixing. Reprinted with permission from Ref. [39]. Copyright 2021, Elsevier Ltd. (b) Schematic diagram of catalytic active sites of HEO. Reprinted with permission from Ref. [25]. Copyright 2022, Elsevier B.V. (c) Categories and phase structure of HEOs. Reprinted with permission from Ref. [24]. Copyright 2022, Elsevier Inc.
Fig. 3. (a) The XRD image of La(FeCoNiCrMn)O3. Reprinted with permission from Ref. [36]. Copyright 2022, American Chemical Society. (b) The XRD images of La(CrMnFeCo2Ni)O3, etc. Reprinted with permission from Ref. [37]. Copyright 2021, Wiley‐VCH GmbH. (c) The XRD images of (Ce, La, Nd, Pr, Sm, Y)O2, etc. Reprinted with permission from Ref. [44]. Copyright 2021, Royal Society of Chemistry. (d) The XRD image of CeHfZrSnErOx. Reprinted with permission from Ref. [46]. Copyright 2022, Elsevier. (e) The XRD images of A2Ti2O7 (A: Gd, Dy, Ho, Er, Yb, Nd). Reprinted with permission from Ref. [48]. Copyright 2023, Elsevier Ltd. (f) The XRD images of Gd2(Ti0.25Zr0.25Hf0.25Ce0.25)2O7, etc. Reprinted with permission from Ref. [50]. Copyright 2022, Elsevier B.V.
Fig. 4. (a) Main synthesis process of (Cu, Mn, Fe, Cr)3O4 by solid-state reaction method. Reprinted with permission from Ref. [60]. Copyright 2021, American Chemical Society. (b) Preparation process of high entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Ce2O7. Reprinted with permission from Ref. [62]. Copyright 2022, Journal of Advanced Ceramics.
Fig. 5. (a) Schematic diagram for the stages of spray pyrolysis process. (b) Spray pyrolysis powder. The black spots indicate that segregation only occurs inside atomized droplets. Reprinted with permission from Ref. [70]. Copyright 2023, Journal of Materials Science: Materials in Electronics. (c) Photographs of the as-synthesized powder by spray pyrolysis and high pressure compacted pellet of RE-HEO powder. (d) SEM image of the as-synthesized RE-HEO showing spherical particles. (e) HR-TEM image of synthesized RE-HEO powder. (f) APT results show the 3D atomic distribution map of RE-HEOs. Reprinted with permission from Ref. [72]. Copyright 2019, Elsevier Ltd.
Fig. 6. (a) Schematic illustration of the preparation of the (CrMnFeCoCu)3O4 HEO. Reprinted with permission from Ref. [77]. Copyright 2023, American Chemical Society. (b) Schematic illustration of the synthesis of CeHfZrSnErOx. Reprinted with permission from Ref. [46]. Copyright 2022, Elsevier. (c) Schematic diagrams of the preparation process of high entropy pyrochlore oxide powder (I) and porous high entropy pyrochlore oxide ceramics (II). Reprinted with permission from Ref. [80]. Copyright 2023, Elsevier Ltd and Techna Group S.r.l.
Fig. 7. (a) The synthesis scheme of the UHE REO nanopowder. Reprinted with permission from Ref. [82]. Copyright 2023, The Royal Society of Chemistry. (b) Schematic of synthesis of HEO powder. Reprinted with permission from Ref. [88]. Copyright 2023, Elsevier B.V.
Fig. 8. (a) Synthesis of carbon-based loaded 10-HEO nanoparticles, TEM image of nanoparticles on a carbon matrix, LSV curves of 10-HEO/C and contrast samples, ORR stability diagram of 10-HEO/C. Reprinted with permission from Ref. [96]. Copyright 2021, Wiley-VCH GmbH. (b) OER of (LPNSE)NO thin films (LSV curves of films with different thicknesses, comparison of OER catalytic activity, Tafel slopes and electrochemical impedance spectra). Reprinted with permission from Ref. [99]. Copyright 2023, AIP Publishing. (c) Electrochemical performances of La1-xCaxB2Co (x = 0, 0.1, 0.2, 0.3, 0.4) (Polarization LSV curves, Tafel slopes, Nyquist plots at 1.627 V vs. RHE and OER durability). Reprinted with permission from Ref. [103]. Copyright 2024, Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
Fig. 9. (a) Ce0.8(LaMnNdZr)0.2O2-y structure diagram. (b) CO conversion rate of the catalysts. (c) Performance comparison of catalysts before and after aging. Reprinted with permission from Ref. [105]. Copyright 2021, American Chemical Society. (d) Schematic diagram of entropy-driven mixing and XRD images. (e) Stability of catalysts. Reprinted with permission from Ref. [107]. Copyright 2021, Springer Nature. (f) Macroporous HEO Ce0.5Ni0.1Mg0.1Cu0.1Zn0.1Co0.1Ox formed by high temperature calcination. (g) Catalytic soot combustion performance of catalysts. (h) Water and sulfur resistance performance of Ce0.5Ni0.1Mg0.1Cu0.1Zn0.1Co0.1Ox. (Reprinted with permission from Ref. [109]. Copyright 2023, The Royal Society of Chemistry.
Fig. 10. (a) Fluorite HEO crystal structure of catalyst. (b) Time-dependent hydrogen (H2) evolution. (c) The ability of catalyst to degrade the dye MB. Reprinted with permission from Ref. [121]. Copyright 2022, Wiley-VCH GmbH. (d) EIS and the equivalent circuit of catalysts. (e) The photocatalytic performances of various photocatalysts. (f) The effect of various reaction parameters on simultaneous photocatalytic CO2 reduction and biorefinery. Reprinted with permission from Ref. [126]. Copyright 2023, The Royal Society of Chemistry. (g) XRD images of different Eu dopants. (h) Photocatalytic mechanism of Ln2-xEuxZr2O7 products. (i) RhB concentration during photodegradation. Reprinted with permission from Ref. [127]. Copyright 2022, Springer Science Business Media, LLC, part of Springer Nature.
|
[1] | 侯现飚, 于辰, 倪腾嘉, 张树聪, 周健, 代水星, 初蕾, 黄明华. 构筑非晶/晶体NiFe-MOF@NiS异质结构催化剂增强大电流密度下水/海水氧化[J]. 催化学报, 2024, 61(6): 192-204. |
[2] | 刘高雄, 陈润东, 夏兵全, 吴珍, 刘善堂, 冉景润. 共价有机框架基光催化剂合成过氧化氢和高价值化学品的最新进展[J]. 催化学报, 2024, 61(6): 97-110. |
[3] | 陈瑞, 方翔, 张东方, 赫兰齐, 吴胤龙, 孙成华, 王昆, 宋树芹. 原位构筑三维有序自支撑Co-N-C一体化电极并用于高效电催化氧还原反应[J]. 催化学报, 2024, 61(6): 237-246. |
[4] | 杜仕文, 章福祥. 密度泛函理论在光催化中的普遍应用[J]. 催化学报, 2024, 61(6): 1-36. |
[5] | 任行宇, 刘佳俊, 张士启, 李彦霖, 崔坤, 李静, 顾正洋, 夏纪宝. 可见光氧化还原钴催化立体发散性合成1,4-二烯[J]. 催化学报, 2024, 61(6): 291-300. |
[6] | 任梦真, 刘天府, 董媛媛, 李正, 杨嘉新, 刁振恒, 吕红金, 杨国昱. CdS纳米棒/含Ni多钨氧酸盐光催化苯硫酚氧化偶联耦合制氢[J]. 催化学报, 2024, 61(6): 312-321. |
[7] | 王凯琪, 何益明. 金属钛酸盐基压电催化剂的最新进展: 改善压电性能和调节载流子输运以提高催化性能[J]. 催化学报, 2024, 61(6): 111-134. |
[8] | 张红红, 王治伟, 隗陆, 刘雨溪, 戴洪兴, 邓积光. 催化法治理挥发性有机物污染的研究进展[J]. 催化学报, 2024, 61(6): 71-96. |
[9] | 陈朝辉, 邓军, 郑燕梅, 张文君, 董琳, 陈祖鹏. 通过调节碳自由基的反应活性调控偶联反应产物和羰基化合物的选择性合成[J]. 催化学报, 2024, 61(6): 135-143. |
[10] | 邵韵航, 张亚宁, 陈潮锋, 窦帅, 娄阳, 董玉明, 朱永法, 潘成思. 通过晶面调控产生强内建电场以提高卟啉光催化剂的H2O2生成速率[J]. 催化学报, 2024, 61(6): 205-214. |
[11] | 邓欣, 郑彩艳, 李玮杰, 王佳敏, 杨迪, 胡振芃, 李兰冬. 金属镍活性中心在惰性金属载体中的自分散及其催化炔烃选择加氢性能[J]. 催化学报, 2024, 61(6): 259-268. |
[12] | 杨冲亚, 王玮珏, 卓红英, 沈铮, 张天雨, 杨小峰, 黄延强. 晶相设计钌基纳米催化剂提高CO2甲烷化活性[J]. 催化学报, 2024, 61(6): 226-236. |
[13] | 苟王燕, 王译晨, 张铭凯, 谈晓荷, 马媛媛, 瞿永泉. 设计稳定的钌基析氢和析氧反应催化剂的基本原理[J]. 催化学报, 2024, 60(5): 68-106. |
[14] | 黄浩铭, 林清清, 牛青, 宁江淇, 李留义, 毕进红, 于岩. 基于共价有机框架非金属位点的光催化CO2还原[J]. 催化学报, 2024, 60(5): 201-208. |
[15] | 李沐霖, 谢一萌, 宋静婷, 杨级, 董金超, 李剑锋. 碳载金属单原子催化剂的电合成氨进展[J]. 催化学报, 2024, 60(5): 42-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||