催化学报 ›› 2024, Vol. 61: 54-70.DOI: 10.1016/S1872-2067(24)60012-4

• 综述 • 上一篇    下一篇

稀土高熵氧化物用于能源和环境催化

李雨鸥a,b, 王克a,b, 王笑妹a,b, 王子健a,b, 徐晶a,b, 赵梦a,b, 汪啸a,b,*(), 宋术岩a,b,*(), 张洪杰a,b,c,*()   

  1. a中国科学院长春应用化学研究所, 稀土资源利用国家重点实验室, 吉林长春 130022
    b中国科学技术大学应用化学与工程系, 安徽合肥 230026
    c清华大学化学系, 北京 100084
  • 收稿日期:2024-02-12 接受日期:2024-03-13 出版日期:2024-06-18 发布日期:2024-06-20
  • 通讯作者: * 电子信箱: wangxiao@ciac.ac.cn (汪啸), songsy@ciac.ac.cn (宋术岩), hongjie@ciac.ac.cn (张洪杰).
  • 基金资助:
    国家科技重大专项(2021YFB3500700);国家自然科学基金(22020102003);国家自然科学基金(22025506);国家自然科学基金(22271274);吉林省科技发展计划项目(20230101035JC);吉林省科技发展计划项目(20230101022JC)

Rare earth-incorporated high entropy oxides for energy and environmental catalysis

Yuou Lia,b, Ke Wanga,b, Xiaomei Wanga,b, Zijian Wanga,b, Jing Xua,b, Meng Zhaoa,b, Xiao Wanga,b,*(), Shuyan Songa,b,*(), Hongjie Zhanga,b,c,*()   

  1. aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
    bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
    cDepartment of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2024-02-12 Accepted:2024-03-13 Online:2024-06-18 Published:2024-06-20
  • Contact: * E-mail: wangxiao@ciac.ac.cn (X. Wang),songsy@ciac.ac.cn (S. Song),hongjie@ciac.ac.cn (H. Zhang).
  • About author:Xiao Wang received his BSc degree in Chemistry in 2008 from Jilin University. Then, he joined the group of Prof. Hongjie Zhang at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), and received his PhD degree in Inorganic Chemistry in 2013. His research focus is primarily on the fabrication of functional inorganic materials for heterogeneous catalytic reactions and energy-related applications.
    Shuyan Song received his BSc degree in Chemistry in 2003 and MSc in inorganic chemistry in 2006 both from Northeast Normal University. He joined the group of Prof. Hongjie Zhang at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), where he received his PhD in inorganic chemistry in 2009. He is working as a professor under the direction of Prof. Zhang at Changchun Institute of Applied Chemistry, CAS. His research focus is primarily on the development of porous functional materials for heterogeneous catalysis, proton conduction, chemical sensing and detection.
    Hongjie Zhang received his BSc degree from Peking University in 1978. He then worked as a research assistant in Changchun Institute of Applied Chemistry, where he received his MSc degree in Inorganic Chemistry in 1985. Then, he worked as an assistant professor at the same institute from 1985-1989. He then studied at Universite de Bordeaux I, Laboratoire de Chimie du Solide du CNRS (France), where he received his PhD degree in Solid State Chemistry and Materials Sciences in 1993. He joined Changchun Institute of Applied Chemistry, CAS, as a professor in 1994. His current research interests include lanthanide organic-inorganic hybrid materials, electroluminescent devices, functional nanomaterials, and the structure and properties of rare earth magnesium alloys.
  • Supported by:
    National Science and Technology Major Project of China(2021YFB3500700);National Natural Science Foundation of China(22020102003);National Natural Science Foundation of China(22025506);National Natural Science Foundation of China(22271274);Program of Science and Technology Development Plan of Jilin Province of China(20230101035JC);Program of Science and Technology Development Plan of Jilin Province of China(20230101022JC)

摘要:

随着工业技术的快速发展, 能源短缺与环境污染问题日益凸显, 对人类生活和社会经济发展造成了严重影响. 在这一背景下, 加速能源系统转型、积极开发与利用可再生能源变得至关重要, 成为当前研究领域的热点. 同时, 消除环境中的有毒有害物质也具有较高的研究价值, 对维护生态平衡和人类健康具有重要意义. 催化技术因在去除污染物和能源转换方面具有巨大的应用潜力而备受关注. 其中, 高熵氧化物因其具有多样可调的晶体结构和丰富的表面活性位点, 展现出较好的催化性能, 从而备受研究者关注. 此外, 稀土元素因以其相近的离子半径、独特的电子轨道和可变的氧化态, 常被用作高熵氧化物的组成元素. 通过引入稀土元素, 可以有效改善高熵氧化物的结构和性能. 近年来, 稀土高熵氧化物在催化应用中取得较多的研究成果, 然而却缺少对该方面工作系统全面的综述. 本文旨在系统总结稀土高熵氧化物的结构特点、合成方法及其在催化领域的应用, 以期为该领域的进一步发展提供有益的参考.
本文从结构、合成及应用等方面, 对稀土高熵氧化物在催化领域的研究进展进行了总结. 首先, 详细介绍了钙钛矿型、萤石型和烧绿石型三种类型稀土高熵氧化物的结构特征, 并探讨了结构对催化反应过程的重要影响. 研究表明, 多组分的高熵效应保证了单相固溶体的形成和高温下的催化稳定性, 而晶格畸变效应则促进了氧空位等活性位点的形成, 进而提升了催化活性. 复杂多变的晶体结构导致了离子扩散延迟, 这也使得高熵材料在催化过程中具有优异稳定性. 此外, 揭示了多种元素间的协同作用对催化性能的提升作用. 值得一提的是, 非等摩尔金属成分也可形成高熵氧化物, 为稀土高熵氧化物研究开辟了新的方向. 其次, 讨论了稀土高熵氧化物的合成方法, 主要包括固相反应合成法、喷雾热解法、化学共沉淀法和溶液燃烧法, 合成方法的选择和优化对于建立高熵系统至关重要. 目前, 众多简单快速的合成方法已取代耗时耗力的合成过程, 为稀土高熵氧化物的制备提供了便利. 最后, 重点概述了稀土高熵氧化物在电催化、热催化和光催化中的应用进展, 并详细介绍了多元素可调材料对反应活性的影响. 同时, 指出了稀土高熵氧化物未来发展所面临的挑战, 并提出了相应的应对策略, 以期为高熵系统的理论研究提供有力支撑.
综上, 稀土高熵氧化物因其复杂结构而展现出丰富的潜在催化反应性能, 具有巨大的应用潜力. 未来研究可以加强开发设计、精准调控结构以及深入分析反应机理, 从而提升高熵氧化物的催化性能. 希望本文能够为稀土高熵氧化物催化体系研究提供有益的参考.

关键词: 稀土, 高熵氧化物, 催化, 单相结构, 合成

Abstract:

High entropy oxides have been regarded as one of the most promising catalysts. Their unique and diverse elemental compositions bring stable structures and abundant metal active sites to the catalysts. Notably, rare earth ions have similar radii, unique electron orbitals, and variable valence states. As a result, incorporating rare earth elements into high entropy oxides can effectively adjust the surface state of the catalyst, ultimately improving the structure and properties of the high entropy oxides. However, there is no systematic review on the development of rare earth-incorporated high entropy oxides. In this review, we target the structure, synthesis, and application of rare earth-incorporated high entropy oxides to summarize their research progress in catalysis in recent years. First, we provide an overview of three types of rare earth-incorporated high entropy oxides: fluorite-type, perovskite-type, and pyrochlore-type. Then, the main synthesis methods are discussed in detail, including solid-state reaction, nebulized spray pyrolysis, chemical co-precipitation, and solution combustion. Finally, we analyze the applications of this material in catalytic reactions and suggest possible challenges and solution strategies. It is concluded that this unique material has good prospects for development.

Key words: Rare earth, High entropy oxides, Catalysis, Single-phase structure, Synthesis