催化学报 ›› 2024, Vol. 64: 152-165.DOI: 10.1016/S1872-2067(24)60099-9

• 论文 • 上一篇    下一篇

空位工程调控中空结构ZnO/ZnS S型异质结用于高效光催化产氢

刘方璇a, 孙彬a,b,*(), 刘子妍a, 魏英勤a, 高婷婷a,b, 周国伟a,*()   

  1. a齐鲁工业大学(山东省科学院)化学与化工学院, 山东省高校轻工精细化学品重点实验室, 济南市多尺度功能材料工程实验室, 山东济南 250353
    b烟台先进材料与绿色制造山东省实验室, 山东烟台 264006
  • 收稿日期:2024-06-09 接受日期:2024-07-03 出版日期:2024-09-18 发布日期:2024-09-19
  • 通讯作者: * 电子信箱: binsun@qlu.edu.cn (孙彬),gwzhou@qlu.edu.cn (周国伟).
  • 基金资助:
    国家自然科学基金(52202102);国家自然科学基金(51972180);山东省自然科学基金(ZR2019BB030);山东省自然科学基金(ZR2020ME082);山东省高等学校青年创新团队发展计划(2021KJ056);烟台先进材料与绿色制造山东省实验室开放基金(AMGM2023F13);烟台先进材料与绿色制造山东省实验室开放基金(AMGM2021F05);齐鲁工业大学科教产融合试点工程基础研究类项目(2023PY022)

Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production

Fangxuan Liua, Bin Suna,b,*(), Ziyan Liua, Yingqin Weia, Tingting Gaoa,b, Guowei Zhoua,*()   

  1. aKey Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
    bShandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, Shandong, China
  • Received:2024-06-09 Accepted:2024-07-03 Online:2024-09-18 Published:2024-09-19
  • Contact: * E-mail: binsun@qlu.edu.cn (B. Sun),gwzhou@qlu.edu.cn (G. Zhou).
  • Supported by:
    National Natural Science Foundation of China(52202102);National Natural Science Foundation of China(51972180);Natural Science Foundation of Shandong Province(ZR2019BB030);Natural Science Foundation of Shandong Province(ZR2020ME082);Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province(2021KJ056);Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(AMGM2023F13);Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(AMGM2021F05);Science, Education and Industry Integration of Basic Research Projects of Qilu University of Technology(2023PY022)

摘要:

利用太阳能驱动半导体光催化分解水产氢是应对能源短缺和环境污染的有效解决方案之一. ZnO因其成本低、化学稳定性良好和环境友好等优点, 在光催化领域备受关注. 然而, 单一ZnO存在光生载流子易复合和光吸收范围窄的本征缺陷, 严重阻碍了其进一步应用. 针对这些问题, 通过形貌调制、空位引入、S型异质结的构建等策略, 可实现光生载流子的有效分离和转移, 拓宽光吸收范围, 同时保留光催化反应中电子和空穴的强氧化还原能力, 从而有效增强光催化性能.

本文以溶剂热法合成的中空结构ZnO为基底, 通过离子交换和煅烧处理方法制备了具有氧和锌双空位的中空ZnO/ZnS S型异质结光催化剂(VO, Zn-ZnO/ZnS). X射线粉末衍射、拉曼光谱、扫描电镜、透射电镜以及非原位X射线光电子能谱等表征证实了VO, Zn-ZnO/ZnS异质结光催化剂的成功制备. 电子顺磁共振光谱测试结果表明, ZnO/ZnS异质结中存在氧和锌双空位. 紫外-可见漫反射结果表明, 空心结构、双空位的引入以及异质结的构建明显提高了太阳光的利用率. 结合莫特-肖特基曲线、X射线光电子能价带谱和紫外光电子能谱等表征结果, 确定了ZnO和ZnS的能带结构和费米能级位置. 利用光电性能、接触角和表观活化能等分析了VO, Zn-ZnO/ZnS异质结光催化产氢性能提升的原因. 密度泛函理论计算、原位X射线光电子能谱和电子自旋共振光谱验证了该异质结的电荷转移路径遵从S型机制. 在模拟太阳光照射下, 最佳配比的VO, Zn-ZnO/ZnS异质结的最大光催化产氢速率为160.91 mmol g-1 h-1, 分别约为纯ZnO和ZnS的643.6倍和214.5倍. 此外, 为了提高光催化剂的可回收性和可重复利用性, 构建了VO, Zn-ZnO/ZnS异质结水凝胶, 仍保持较好的光催化产氢活性.

综上所述, 在此光催化体系中, 空心结构和空位的引入提高了太阳光的利用率. 此外, 氧和锌空位分别作为光生电子和空穴的捕获位点, 有利于促进光生载流子的分离. 同时, S型电荷转移机制不仅提高了光生载流子的分离和转移效率, 而且还保持了其强的氧化还原能力. 本研究利用空位工程为构建高效S型异质结用于光催化分解水产氢提供了一种新思路.

关键词: 空心结构, ZnO/ZnS, S型异质结, 空位工程, 光催化产氢

Abstract:

Designing a step-scheme (S-scheme) heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H2 production activity. Herein, a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies (VO, Zn-ZnO/ZnS) is rationally constructed via ion-exchange and calcination treatments. In such a photocatalytic system, the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption. Moreover, the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes, respectively, which are beneficial for promoting the photo-induced carrier separation. Meanwhile, the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity. As expected, the optimized VO, Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H2 production rate of 160.91 mmol g-1 h-1, approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS, respectively. Simultaneously, the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S‐scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier. This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar‐to‐fuel energy conversion.

Key words: Hollow structure, ZnO/ZnS, S-scheme heterojunction, Vacancy engineering, Photocatalytic H2 production