催化学报 ›› 2024, Vol. 65: 126-137.DOI: 10.1016/S1872-2067(24)60114-2

• 论文 • 上一篇    下一篇

超薄氮化硼-铁-石墨烯三明治结构中的温和极化电场用于高效氮还原

修子媛a, 穆韡a, 周欣b, 韩晓军a,*()   

  1. a哈尔滨工业大学化工与化学学院,城市水资源与环境国家重点实验室, 黑龙江哈尔滨150001
    b哈尔滨工业大学化工与化学学院,新能源转化与存储关键材料工业和信息化部重点实验室, 黑龙江哈尔滨150001
  • 收稿日期:2024-06-21 接受日期:2024-08-06 出版日期:2024-10-18 发布日期:2024-10-15
  • 通讯作者: *电子信箱: hanxiaojun@hit.edu.cn (韩晓军).
  • 基金资助:
    国家自然科学基金(22174031);国家自然科学基金(22374033);黑龙江省自然科学基金(ZD2022B001);黑龙江头雁团队(HITTY-20190034);城市水资源与环境国家重点实验室(哈尔滨工业大学)(2023DX12)

Mild polarization electric field in ultra-thin BN-Fe-graphene sandwich structure for efficient nitrogen reduction

Ziyuan Xiua, Wei Mua, Xin Zhoub, Xiaojun Hana,*()   

  1. aState Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
    bMIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • Received:2024-06-21 Accepted:2024-08-06 Online:2024-10-18 Published:2024-10-15
  • Contact: *E-mail: hanxiaojun@hit.edu.cn (X. Han).
  • Supported by:
    National Natural Science Foundation of China(22174031);National Natural Science Foundation of China(22374033);Natural Science Foundation of Heilongjiang Province(ZD2022B001);Heilongjiang Touyan Team(HITTY-20190034);State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology)(2023DX12)

摘要:

本文设计并合成了一种新型超薄三明治结构催化剂, 旨在解决传统能源密集型的Haber-Bosch工艺在合成氨过程中存在的高能耗和环境污染问题. 通过开发新型电催化剂, 利用电能驱动氮气和水分子进行反应, 提高氮气还原反应(NRR)的产氨率和选择性, 从而实现在常温条件下的氨合成. 然而, 电催化合成氨的实际应用仍然受到严重限制, 主要原因为: (1) NN三键键能高达940.95 kJ mol‒1, 结构稳定难以被裂解; (2)析氢反应与之竞争质子和电子; (3)反应电子利用效率低.

过渡金属催化剂的半满d轨道可以与氮气分子的反键轨道相互作用, 促进氮气分子活化产氨. 本文将其修饰在二维石墨烯基底材料上, 在调控表面电子结构的同时防止金属原子的团聚. 通过化学气相沉积(CVD)法和聚甲基丙烯酸转移法将Fe-G导电层和氮化硼催化层逐层修饰到裸电极表面合成出超薄BN-Fe-G(氮化硼-铁-石墨烯)工作电极, 该超薄无金属暴露的催化剂可以在外加电压驱动下使电子直接隧穿至工作电极表面的硼位点, 提高电子利用率, 增强电催化NRR活性. 通过原子力显微镜对所制备催化剂的微观形貌和厚度进行了分析, 通过拉曼和X射线光电子能谱测试证实了不同样品的结构组成、修饰的超薄催化剂质量以及催化剂中元素配位状态. 与纯BN相比, BN-Fe-G具有更大的电化学活性比表面积和更好的电催化NRR活性. 该体系在0.1 mol L‒1 HCl电解液中, ‒0.3 V(vs. RHE)外加电压驱动下, 产氨率高达8.9 μg h‒1 cm‒2, 法拉第效率为21.7%, 同时还展现出良好的催化剂结构稳定性和电催化NRR循环稳定性. 采用电化学性质测试、原位红外以及密度泛函理论(DFT)计算结果等研究了不同时间以及不同外加电压下氮气活化加氢过程以及生成的中间产物. 通过DFT构建了三种模型, 分别为G-Fe-G, BN-Fe-G和BN-Fe-BN, 差分电荷结果表明Fe与覆盖在其表面催化剂的电子态结合强度依次为G-Fe-G > BN-Fe-G > BN-Fe-BN, 说明在石墨烯导电层与BN催化层之间引入Fe可以获得一个不强也不弱的中性极化电场. 中性极化电场的构建有效抑制了析氢反应发生并促进反应物活化后NH3产物的脱附. 根据电催化合成氨过程中吸附加氢每一步自由能台阶图结果, 揭示反应的决速步骤是第一步加氢, 反应能垒为1.75 eV, 反应的加氢机制为远端加氢和交替加氢并存.

通常电催化合成氨反应实验室规模的研究是在小型反应器中进行. 然而, 为了实现工业规模的产氨, 有必要将这些研究成果扩展到更大的反应装置中. 通过本文CVD法合成的催化剂可以用于制造更大尺寸具有高活性和良好电导率的工作电极, 为在扩大规模的反应装置中合成NH3提供新的研究思路.

关键词: 超薄氮化硼, 铁掺杂, 氮化硼-铁-石墨烯, 中性极化电场, 氮气还原反应

Abstract:

The electrocatalytic N2 reduction reaction (NRR) is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions. The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst, correct electron transfer direction, and electron tunneling distance between bare electrode and active sites. By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method, an ultrathin sandwich catalyst, i.e., Fe atoms (polarized electric field layer) sandwiched between ultrathin (within electron tunneling distance) BN (catalyst layer) and graphene film (conducting layer), is fabricated for electrocatalytic NRR. The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure. The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9 μg h-1 cm-2 and Faradaic Efficiency of 21.7%. The N2 adsorption, activation, and polarization electric field changes of three sandwich catalysts (BN-Fe-G, BN-Fe-BN, and G-Fe-G) during the electrocatalytic NRR are investigated by experiments and density functional theory simulations. Driven by applied voltage, the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR.

Key words: Ultra-thin BN, Fe doping, BN-Fe-graphene, Mild polarization electric field, Nitrogen reduction reaction