催化学报 ›› 2024, Vol. 66: 292-301.DOI: 10.1016/S1872-2067(24)60127-0

• 论文 • 上一篇    

硫代硫酸钠辅助合成高Pt含量燃料电池金属间电催化剂

殷诗怡a, 许实龙b,*(), 李子睿a, 李帅a, 薛锟泽a, 张万群a, 储胜启c,*(), 梁海伟a,*()   

  1. a中国科学技术大学化学系, 合肥国家微尺度物理科学研究中心, 安徽合肥 230026
    b安徽建筑大学安徽省先进建材工程实验室, 安徽合肥 230601
    c中国科学院高能物理研究所, 北京 100049
  • 收稿日期:2024-08-07 接受日期:2024-08-30 出版日期:2024-11-18 发布日期:2024-11-10
  • 通讯作者: *电子信箱: hwliang@ustc.edu.cn (梁海伟),xslong@ahjzu.edu.cn (许实龙),chusq@ihep.ac.cn (储胜启).
  • 基金资助:
    国家自然科学基金(22325903);国家自然科学基金(22221003);国家自然科学基金(22071225);中国博士后面上基金(2022M712179);安徽省科技重大专项计划(202203a0520013);安徽省科技重大专项计划(2021d05050006);中国科大“双一流”项目科研经费(YD2060002032)

Sodium thiosulfate-assisted synthesis of high-Pt-content intermetallic electrocatalysts for fuel cells

Shi-Yi Yina, Shi-Long Xub,*(), Zi-Rui Lia, Shuai Lia, Kun-Ze Xuea, Wanqun Zhanga, Sheng-Qi Chuc,*(), Hai-Wei Lianga,*()   

  1. aHefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
    bAnhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei 230601, Anhui, China
    cInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-08-07 Accepted:2024-08-30 Online:2024-11-18 Published:2024-11-10
  • Contact: *E-mail: hwliang@ustc.edu.cn (H.-W. Liang),xslong@ahjzu.edu.cn (S.-L. Xu),chusq@ihep.ac.cn (S.-Q. Chu).
  • Supported by:
    National Natural Science Foundation of China(22325903);National Natural Science Foundation of China(22221003);National Natural Science Foundation of China(22071225);fellowship of China Postdoctoral Science Foundation(2022M712179);Plan for Anhui Major Provincial Science & Technology Project(202203a0520013);Plan for Anhui Major Provincial Science & Technology Project(2021d05050006);USTC Research Funds of the Double First-Class Initiative(YD2060002032)

摘要:

质子交换膜燃料电池(PEMFCs)是一种前景广阔的绿色能源技术, 但其商业化发展受到阴极氧还原反应(ORR)动力学缓慢、Pt/C催化剂成本高以及稳定性差等因素的制约. 通过将Pt与非贵金属(如Co、Fe)合金化,可以减少Pt用量并提高ORR活性. 相比无序固溶体合金, 有序结构的Pt基金属间化合物(IMCs)由于更强的应变和配体效应, 能进一步提升ORR活性, 并通过3d-5d轨道电子相互作用抑制非贵金属浸出, 增强耐久性. Pt基IMCs催化剂的合成通常需要在高温退火(> 700 °C)下进行, 以促进合金化并克服无序向有序转变的动力学阻碍. 然而, 高温退火通常会导致烧结、晶粒增大、电化学表面积减少, 催化活性降低, 尤其在高Pt含量催化剂中更明显. 为解决上述问题, 提出了碳包覆、金属有机框架限制、强锚定等策略, 但高Pt含量下难以控制晶粒尺寸或过程复杂, 不利于规模化生产.

本文提出了一种硫代硫酸钠辅助浸渍的策略, 用于合成高Pt载量(达到44.5 wt%)且小尺寸、高有序度的PtM-S IMCs (M = Co, Fe, Ni)催化剂. 在浸渍过程中, 硫代硫酸盐将H2PtCl6还原为均匀分散的Pt胶体, 并沉积在碳载体上, 从而防止了Pt在低温退火阶段团聚. 在高温热解过程中, 含S物质被掺杂进碳晶格中, 形成稳定的噻吩硫结构, Pt和S的强相互作用有效抑制了颗粒的烧结, 确保了在高温退火阶段形成小尺寸、高有序度的PtM-S IMCs的催化剂. 由于硫代硫酸钠辅助浸渍策略的便捷性和可扩展性, 成功合成了高有序度且小尺寸(3-5 nm)的PtM-S (M = Co, Fe, Ni) IMCs催化剂. 此外, 采用冷冻干燥技术, 实现了2.5 g高有序度(67.2%)的L10 PtCo-S IMCs催化剂的克级一批次合成. 随着Pt金属负载含量从27.2 wt%增加到44.5 wt%, 催化剂没有出现任何聚集和严重烧结现象, 且仍保持高有序度. 优化后的PtCo-S IMCs催化剂在单电池测试中表现出较好的电催化性能, 质量活性达到0.72 A mgPt-1, 并在0.65 V, H2/Air条件下实现了1.17 W cm-2的高功率密度, 性能优于商业催化剂TKK-Pt/C. PtCo-S催化剂ORR性能的提升, 归因于PtCo@Pt核壳结构表面Pt的压缩应变, 使得d带中心下移, 从而减弱了对含氧中间体的吸附强度. 此外, PtCo-S催化剂在加速应力测试后, 仍保留74%的质量活性, 耐久性显著优于商业催化剂TKK-Pt/C. PtCo-S催化剂的核壳结构显著提高了催化剂的稳定性, 抑制了Co从内核的进一步浸出. 同时, 3d-5d轨道间的强电子相互作用也有效阻碍了Co的浸出.

综上, 硫代硫酸钠辅助合成策略可以有效地抑制金属烧结和相分离, 从而制备出高Pt含量、小尺寸且高有序度的PtM-S IMCs (M = Co, Fe, Ni)催化剂. 同时, 该策略的便捷性、可扩展性和经济性使规模化的生产成为可能. 合成的PtM-S IMCs (M = Co, Fe, Ni)催化剂在燃料电池单电池测试中表现出高活性与稳定性, 为设计高性能质子交换膜燃料电池阴极催化剂提供了新思路.

关键词: 硫代硫酸钠, 小尺寸, Pt基金属间化合物, 高Pt含量, 质子交换膜燃料电池

Abstract:

Carbon supported Pt-based intermetallic compounds (IMCs) with high activity and durability are the most competitive cathode catalysts for the commercialization of proton exchange membrane fuel cells (PEMFCs). The synthesis of Pt-based intermetallics with a good balance between small size and high metal loading remains challenging because of the high-temperature annealing that is generally required to form intermetallic phases. We developed a sodium thiosulfate-assisted impregnation strategy to synthesize small-sized and highly ordered PtM IMCs catalysts (M = Co, Fe, Ni) with high-Pt-content (up to 44.5 wt%). During the impregnation process, thiosulfate could reduce H2PtCl6 to form uniformly dispersed Pt colloid on carbon supports, which in turn prevents the aggregation of Pt at the low-temperature annealing stage. Additionally, the strong interaction between Pt and S inhibits particle sintering, ensuring the formation of small-sized and uniform PtM intermetallic catalysts at the high-temperature annealing stage. The optimized intermetallic PtCo catalyst delivered a high mass activity of 0.72 A mgPt-1 and a large power performance of 1.17 W cm-2 at 0.65 V under H2-air conditions, along with 74% mass activity retention after the accelerated stress test.

Key words: Sodium thiosulfate, Small-sized, Pt-based intermetallic compound, High-Pt-content, Proton exchange membrane fuel cells