催化学报 ›› 2024, Vol. 65: 1-39.DOI: 10.1016/S1872-2067(24)60118-X
• 综述 • 下一篇
刘欢a,1, 何少雄b,1, 曲家福a, 蔡亚辉c, 杨晓刚a, 李长明a,*(), 胡俊蝶a,b,*(
)
收稿日期:
2024-06-03
接受日期:
2024-08-19
出版日期:
2024-10-18
发布日期:
2024-10-15
通讯作者:
*电子信箱: ecmli@swu.edu.cn (李长明),
hjd@usts.edu.cn (胡俊蝶).
作者简介:
1共同第一作者.
基金资助:
Huan Liua,1, Shaoxiong Heb,1, Jiafu Qua, Yahui Caic, Xiaogang Yanga, Chang Ming Lia,*(), Jundie Hua,b,*(
)
Received:
2024-06-03
Accepted:
2024-08-19
Online:
2024-10-18
Published:
2024-10-15
Contact:
*E-mail: ecmli@swu.edu.cn (C. M. Li), hjd@usts.edu.cn (J. Hu).
About author:
Chang Ming Li (School of Materials Science and Engineering, Suzhou University of Science and Technology) received his B.S. degree from University of Science and Technology of China in 1970, and Ph.D. degree from Wuhan University in 1987. He worked at Nanyang Technological University (from 2003 to 2012) and Southwest University (from 2012 to 2016). Since 2017, he has been working in Suzhou University of Science and Technology. His research interests mainly focus on cross-field sciences including functional nanomaterials and green energies. He has published 800 more peer-reviewed journal papers and H-index of 107 as well as 240 patents. He is the Chief Editor of Mater. Rep.: Energy.Supported by:
摘要:
双通道氧化还原系统在光催化析氢耦合废弃物光重整氧化方面展现出热力学和动力学上的双重优势. 然而, 现有综述聚焦于某些特定的氧化反应, 例如有机合成、水修复等, 往往忽视了塑料升级、生物质转化和过氧化氢生产方面的最新进展, 也缺乏对催化机制的深入探讨. 本综述通过全面概述双通道光催化制氢耦合高价值废弃物光重整氧化的最新进展来弥补这些空白. 重点介绍“变废为宝”的设计理念, 强调双通道光催化反应的挑战、优势和各类应用, 包括生物质、酒精、胺类、塑料废物、有机污染物的光重整, 以及过氧化氢的生产. 本文重点讨论改进策略和催化机制探索, 包括先进的原位表征、自旋捕获实验和密度泛函理论计算 (DFT). 通过对该领域的挑战和未来发展方向的分析, 本文旨在为设计创新的双通道光催化系统提供有价值的见解.
本文系统介绍了双通道光催化制氢耦合高值氧化反应的最新研究进展, 包括生物质转化、醇转化、胺转化、塑料废物光重整、废水中有机污染物降解和过氧化氢生产. 首先概述了光催化制氢的基本知识, 分析了水分解过程中遇到的挑战, 如析氧反应动力学缓慢、电荷重组快速、逆反应和对牺牲剂的依赖, 强调了双通道光催化反应系统的优势, 如抑制电荷重组、消除牺牲剂、高效利用光生载流子. 重点讨论双通道光催化反应的各种应用, 及提高反应效率的策略, 如氧化还原中心的空间分离、调整电子结构、构筑内建电场、发挥协同催化效应. 最后, 本文指出了该领域的挑战和未来发展方向: (1)生物质和废塑料等有机基质的成分复杂, 往往导致光催化转换效率较低; (2)反应过程中, 通过调节氧化物种类型和控制氧化途径, 可以提高产物的选择性和光催化反应效率; (3)优化反应条件和光催化系统防止有机底物的过度氧化; (4)采用先进表征技术和DFT理论计算深入探究催化协同机制和复杂的氧化过程; (5)实现产物有效分离, 促进该双通道反应体系的实际工业化应用; (6)借助双通道反应体系在热力学和动力学上的双重优势减少能量消耗、降低工业应用成本.
综上, 本文总结了空间分离的双通道光催化析氢耦合废弃物光重整氧化的研究进展, 旨在为创新双通道光催化系统的设计提供有见地的参考.
刘欢, 何少雄, 曲家福, 蔡亚辉, 杨晓刚, 李长明, 胡俊蝶. 双通道氧化还原反应用于光催化析氢耦合废弃物光重整氧化[J]. 催化学报, 2024, 65: 1-39.
Huan Liu, Shaoxiong He, Jiafu Qu, Yahui Cai, Xiaogang Yang, Chang Ming Li, Jundie Hu. Dual-channel redox reactions for photocatalytic H2-evolution coupled with photoreforming oxidation of waste materials[J]. Chinese Journal of Catalysis, 2024, 65: 1-39.
Fig. 3. Schematic depicting the evolutionary journey of water splitting photocatalysts for H2 evolution. (a) Reprinted with permission from Ref. [35]. Copyright 2022, Elsevier. (b) Reprinted with permission from Ref. [26]. Copyright 2008, Springer Nature. (c) Reprinted with permission from Ref. [36]. Copyright 2024, John Wiley and Sons. (d) Reprinted with permission from Ref. [28]. Copyright 2014, Royal Society of Chemistry. (e) Reprinted with permission from Ref. [29]. Copyright 2015, Royal Society of Chemistry. (f) Reprinted with permission from Ref. [30]. Copyright 2018, John Wiley and Sons. (g) Reprinted with permission from Ref. [31]. Copyright 2019, Elsevier. (h) Reprinted with permission from Ref. [32]. Copyright 2021, Springer Nature. (i) Reprinted with permission from Ref. [33]. Copyright 2022, Springer Nature. (j) Reprinted with permission from Ref. [34]. Copyright 2023, Springer Nature.
No. | Photocatalyst | Substrate | Oxidation product | H2 yield (μmol g-1 h-1) | Oxidation product yield (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|---|
1 | TiO2-NiO | lignin | fatty acid | 23500 | 30 | Xe lamp | [ |
2 | h-ZnSe/Pt@TiO2 | cellulose | HCOOH | 1858 | 372 | Xe lamp | [ |
3 | 0.2-NiS/CdS | lactic acid, lignin | ethanol formic acid oxalic acid | 1512.4 | — | Xe lamp | [ |
4 | Zn0.3Cd0.7S | glucose | lactic acid | 13640 | 76.8 | Xe lamp | [ |
5 | CQDs/TiO2 | glucose | arabinose glycolic acid | 2430 | — | Xe lamp | [ |
6 | O-ZIS-120 | HMF | DFF | 1522 | 1624 | Xe lamp | [ |
7 | Znln2S4/Nb2O5 | HMF | DFF | 1286 | — | Xe lamp λ > 420 nm | [ |
8 | Pt-SGCN | HMF | DFF | 1200 | 130 | LED > 420 nm | [ |
9 | UCNT | HMF | DFF | 92 | 950 | Xe lamp λ ≥ 420 nm | [ |
10 | Zn0.5Cd0.5S-P | HMF | DFF | 419 | — | LED (30 × 3 W) | [ |
11 | CoP/ZCS | HMF | DFF | 2440 | 1610 | Xe lamp | [ |
12 | NiS/Ni-CdS | ethanol | acetaldehyde | 7980 | 7330 | Xe lamp | [ |
13 | CdS/MoO2/MoS2 | lactic acid | pyruvic acid | 9600 | — | Xe lamp λ > 420 nm | [ |
Table 1 Recent research advancements in photocatalytic H2-evolution coupled with biomass conversion.
No. | Photocatalyst | Substrate | Oxidation product | H2 yield (μmol g-1 h-1) | Oxidation product yield (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|---|
1 | TiO2-NiO | lignin | fatty acid | 23500 | 30 | Xe lamp | [ |
2 | h-ZnSe/Pt@TiO2 | cellulose | HCOOH | 1858 | 372 | Xe lamp | [ |
3 | 0.2-NiS/CdS | lactic acid, lignin | ethanol formic acid oxalic acid | 1512.4 | — | Xe lamp | [ |
4 | Zn0.3Cd0.7S | glucose | lactic acid | 13640 | 76.8 | Xe lamp | [ |
5 | CQDs/TiO2 | glucose | arabinose glycolic acid | 2430 | — | Xe lamp | [ |
6 | O-ZIS-120 | HMF | DFF | 1522 | 1624 | Xe lamp | [ |
7 | Znln2S4/Nb2O5 | HMF | DFF | 1286 | — | Xe lamp λ > 420 nm | [ |
8 | Pt-SGCN | HMF | DFF | 1200 | 130 | LED > 420 nm | [ |
9 | UCNT | HMF | DFF | 92 | 950 | Xe lamp λ ≥ 420 nm | [ |
10 | Zn0.5Cd0.5S-P | HMF | DFF | 419 | — | LED (30 × 3 W) | [ |
11 | CoP/ZCS | HMF | DFF | 2440 | 1610 | Xe lamp | [ |
12 | NiS/Ni-CdS | ethanol | acetaldehyde | 7980 | 7330 | Xe lamp | [ |
13 | CdS/MoO2/MoS2 | lactic acid | pyruvic acid | 9600 | — | Xe lamp λ > 420 nm | [ |
Fig. 8. (a) Diagram of photocatalytic cellulose reforming on h-ZnSe/Pt@TiO2. Reprinted with permission from Ref. [46]. Copyright 2023, John Wiley and Sons. (b) Diagram of photocatalytic lignocellulosic oxidation on PtSA-CdS. Reprinted with permission from Ref. [57]. Copyright 2024, John Wiley and Sons. (c) Reaction mechanism of glucose photoreforming. Reprinted with permission from Ref. [49]. Copyright 2021, Elsevier. (d) Mechanism of photocatalytic oxidation of HMF. Reprinted with permission from Ref. [52]. Copyright 2013, Royal Society of Chemistry (e) Photocatalytic performance in H2 evolution and HMF oxidation. (f) Photocatalytic HMF conversion on CoP/ZCS. Reprinted with permission from Ref. [54]. Copyright 2022, American Chemical Society.
No. | Photocatalyst | Substrate | Oxidation products | H2 yield (μmol g-1 h-1) | Oxidation product yield (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|---|
1 | MoS2/ZIS | FA | FAL | 2752 | 2832 | Xe lamp λ > 420 nm | [ |
2 | Ti3C2Tx/CdS | FA | FAL | 193.25 | 194.25 | Xe lamp λ > 420 nm | [ |
3 | LaVO4/g-C3N4 | FA | FAL | 1440 | 950 | Xe lamp 250 mW cm-2 | [ |
4 | ZnIn2S4/Tp-Tta COF | FA | FAL | 9730 | 12100 | Xe lamp λ ≥ 350 nm | [ |
5 | CoTiO3/Zn0.5Cd0.5S | FA | FAL | 1929 | 3197.12 | White LEDs λ ≥ 420 nm | [ |
6 | ZCS/Pt | FA | FAL | 1045 | 807.6 | Xe lamp | [ |
7 | ReS2/ZIS | FA | FAL | 3092.90 | 710 | LED λ > 420 nm | [ |
8 | Ti3C2Tx/g-C3N4 | FA | FAL | 1170 | 1220 | Xe lamp | [ |
9 | ReS2/ZnIn2S4-Sv | FA | FAL | 1080 | 710 | Xe lamp | [ |
10 | Pt-g-C3N4 | BA | BAD | 2856.7 | 198.28 | Xe lamp λ > 420 nm | [ |
11 | CdS/BiVO4 | BA | BAD | 4558 | 4396 | Xe lamp λ > 420 nm | [ |
12 | CN/BP@Ni | BA | BAD | 8590 | 9390 | LED lamp | [ |
13 | VC/CdS | BA | BAD | 20500 | 71280 | Xe lamp λ = 420 nm | [ |
14 | CdS(ZB)/CdS (WZ)/Ni-BTC | BA | BAD | 2891 | — | Xe lamp λ > 420 nm | [ |
15 | CdS/MIL-53(Fe) | BA | BAD | 2334 | 2825 | Xe lamp λ > 420 nm | [ |
16 | RuSA-RuO2/TiO2 | BA | BAD | 2910 | 1420 | Xe lamp | [ |
17 | CIZS/NiPcCDs | BA | BAD | 4100 | — | Xe lamp | [ |
18 | NiS/CdS | BA | BAD | 10390 | 8190 | Xe lamp | [ |
19 | SCNHMS | BA | BAD | 3760 | 3870 | Xe lamp | [ |
Table 2 Recent research advancements in photocatalytic H2-evolution coupled with alcohol conversion.
No. | Photocatalyst | Substrate | Oxidation products | H2 yield (μmol g-1 h-1) | Oxidation product yield (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|---|
1 | MoS2/ZIS | FA | FAL | 2752 | 2832 | Xe lamp λ > 420 nm | [ |
2 | Ti3C2Tx/CdS | FA | FAL | 193.25 | 194.25 | Xe lamp λ > 420 nm | [ |
3 | LaVO4/g-C3N4 | FA | FAL | 1440 | 950 | Xe lamp 250 mW cm-2 | [ |
4 | ZnIn2S4/Tp-Tta COF | FA | FAL | 9730 | 12100 | Xe lamp λ ≥ 350 nm | [ |
5 | CoTiO3/Zn0.5Cd0.5S | FA | FAL | 1929 | 3197.12 | White LEDs λ ≥ 420 nm | [ |
6 | ZCS/Pt | FA | FAL | 1045 | 807.6 | Xe lamp | [ |
7 | ReS2/ZIS | FA | FAL | 3092.90 | 710 | LED λ > 420 nm | [ |
8 | Ti3C2Tx/g-C3N4 | FA | FAL | 1170 | 1220 | Xe lamp | [ |
9 | ReS2/ZnIn2S4-Sv | FA | FAL | 1080 | 710 | Xe lamp | [ |
10 | Pt-g-C3N4 | BA | BAD | 2856.7 | 198.28 | Xe lamp λ > 420 nm | [ |
11 | CdS/BiVO4 | BA | BAD | 4558 | 4396 | Xe lamp λ > 420 nm | [ |
12 | CN/BP@Ni | BA | BAD | 8590 | 9390 | LED lamp | [ |
13 | VC/CdS | BA | BAD | 20500 | 71280 | Xe lamp λ = 420 nm | [ |
14 | CdS(ZB)/CdS (WZ)/Ni-BTC | BA | BAD | 2891 | — | Xe lamp λ > 420 nm | [ |
15 | CdS/MIL-53(Fe) | BA | BAD | 2334 | 2825 | Xe lamp λ > 420 nm | [ |
16 | RuSA-RuO2/TiO2 | BA | BAD | 2910 | 1420 | Xe lamp | [ |
17 | CIZS/NiPcCDs | BA | BAD | 4100 | — | Xe lamp | [ |
18 | NiS/CdS | BA | BAD | 10390 | 8190 | Xe lamp | [ |
19 | SCNHMS | BA | BAD | 3760 | 3870 | Xe lamp | [ |
Fig. 9. (a) Transient photocurrent signals. Reprinted with permission from Ref. [64]. Copyright 2021, John Wiley and Sons. (b) Yield of H2 evolution coupled with FA oxidation. (c) Proposed reaction mechanism for FA conversion and H2 evolution over MoS2-ZIS. Reprinted with permission from Ref. [59]. Copyright 2021, Elsevier. (d) Schematic diagram of photocatalysis mechanism on TC/CN. (e) Electron density distribution on TC/CN. (f) Free energy profiles of FAL oxidation. Reprinted with permission from Ref. [66]. Copyright 2023, Royal Society of Chemistry. (g) Schematic illustration for photocatalytic H2 evolution coupled with FA production on LaVO4/CN. Reprinted with permission from Ref. [61]. Copyright 2021, Elsevier. (h) Schematic diagram of synthesis route of ReS2/ZnIn2S4-Sv heterojunction. Reprinted with permission from Ref. [67]. Copyright 2022, Elsevier.
Fig. 10. (a) Synthesis of RuSA-RuO2/TiO2. Reprinted with permission from Ref. [74]. Copyright 2023, Elsevier. (b) Schematic diagram of the ternary CIZS/NiPc-CDs composite. (c) Comparison of H2 production rates. Reprinted with permission from Ref. [11]. Copyright 2023, John Wiley and Sons. (d) 1H NMR spectra of the solvent. Reprinted with permission from Ref. [75]. Copyright 2021, Elsevier. (e) Mechanism of photocatalyzed alcohol oxidation. Reprinted with permission from Ref. [72]. Copyright 2021, Elsevier.
No. | Photocatalyst | Oxidation product | H2 evolution (μmol g-1 h-1) | Oxidation product yield (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|
1 | PdSA+C/TiO2-VO | NBLL | 585.4 | 257.3 | Xe lamp | [ |
2 | CdS/Fe2O3 | NBLL | 39400 | 10114.4 | Xe lamp λ = 420 nm | [ |
3 | PdSA-ZIS | NBLL | 11100 | 10200 | Xe lamp | [ |
4 | MOF-808 | NBLL | 1.7 | 128 | Xe lamp | [ |
5 | DZIS | NBLL | 93002 | 147734 | Xe lamp λ > 420 nm | [ |
6 | Pd@TiO2@ZnIn2S4 | NBLL | 5350 | 11430 | Xe lamp | [ |
7 | CoCN | NBLL | 3979 | 147734 | Xe lamp λ > 420nm | [ |
8 | CN-NS/TO-NW(40) | NBLL | 5100 | 93 | Xe lamp λ > 400 nm | [ |
9 | TCOF-Pt SA3 | NBLL | 501.8 | 477.3 | Xe lamp | [ |
10 | NiCoFe-LDH@ZIS | NBLL | 113570 | 97.78 | Xe lamp | [ |
11 | Pt@UiO-66-NH2@ZIS) | Imine | 850 | 78 | Xe lamp λ > 420 nm | [ |
12 | PdOx@HCdS@ZIS@Pt | NBLL | 86380 | 164750 | Xe lamp λ = 350-780 nm | [ |
Table 3 Recent research advancements in photocatalytic H2-evolution coupled with amine conversion.
No. | Photocatalyst | Oxidation product | H2 evolution (μmol g-1 h-1) | Oxidation product yield (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|
1 | PdSA+C/TiO2-VO | NBLL | 585.4 | 257.3 | Xe lamp | [ |
2 | CdS/Fe2O3 | NBLL | 39400 | 10114.4 | Xe lamp λ = 420 nm | [ |
3 | PdSA-ZIS | NBLL | 11100 | 10200 | Xe lamp | [ |
4 | MOF-808 | NBLL | 1.7 | 128 | Xe lamp | [ |
5 | DZIS | NBLL | 93002 | 147734 | Xe lamp λ > 420 nm | [ |
6 | Pd@TiO2@ZnIn2S4 | NBLL | 5350 | 11430 | Xe lamp | [ |
7 | CoCN | NBLL | 3979 | 147734 | Xe lamp λ > 420nm | [ |
8 | CN-NS/TO-NW(40) | NBLL | 5100 | 93 | Xe lamp λ > 400 nm | [ |
9 | TCOF-Pt SA3 | NBLL | 501.8 | 477.3 | Xe lamp | [ |
10 | NiCoFe-LDH@ZIS | NBLL | 113570 | 97.78 | Xe lamp | [ |
11 | Pt@UiO-66-NH2@ZIS) | Imine | 850 | 78 | Xe lamp λ > 420 nm | [ |
12 | PdOx@HCdS@ZIS@Pt | NBLL | 86380 | 164750 | Xe lamp λ = 350-780 nm | [ |
Fig. 11. (a) Possible photocatalytic mechanisms on Pt/CdS/Fe2O3. (b) The capture experiments. (c) Energy band positions of CdS and Fe2O3. Reprinted with permission from Ref. [14]. Copyright 2022, American Chemical Society. (d) FT-EXAFS spectra. (e) Mechanism diagram of photocatalytic H2 evolution coupled with benzylamine oxidation. Reprinted with permission from Ref. [83]. Copyright 2020, John Wiley and Sons. (f) Production for the N-benzylidenebenzylamine and H2 of as-prepared metal single atom-ZIS. (g) Charge density difference mapping between InS2 layer and PdSA-ZnS layer in PdSA-ZIS side view and (h) top view. Reprinted with permission from Ref. [13]. Copyright 2022, Elsevier.
No. | Photocatalyst | Substrate | Photoreforming | H2 evolution (mmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|
1 | CdS/CdOx | PLA | polylactic acid, polyethylene, terephthalate polyurethane | 64.3 | simulated solar light AM 1.5G | [ |
2 | CNx|Ni2P | PLA | acetate formate | 0.17 | simulated solar light AM 1.5G | [ |
3 | O-CuIn5S8 | PET | formate, acetate, glycolate | 2.57 | Xe lamp | [ |
4 | Pt/TiO2-x/Ti | plastic wastes | acetate, CH4, CO | 399.2 | Xe lamp 400-800 nm | [ |
5 | MCN | PET | aormate, lyoxal, acetate | 7.33 | Xe lamp 100 mW cm-2 | [ |
6 | d-NiPS3/CdS | PET | carbonate | 121.04 | Xe lamp λ > 400 nm | [ |
7 | MoS2/CdS | PLA | formate, lactate | 379.35 | Xe lamp | [ |
8 | M-2/Z0.6C0.4S | PET | glycolate, acetate, ethanol | 14.2 | Xe lamp λ > 420 nm | [ |
9 | CN-CNTs-NiMo | PLA | glyoxal, carboxylate | 0.09 | Xe lamp | [ |
10 | Pt-CdOx/CdS/SiC | PET | glycolate | 0.025 | Xe lamp | [ |
11 | 5.6LS-CZS | PET | glycolate, ethanol | 13.83 | Xe lamp | [ |
12 | Ni2P/ZnIn2S4 | PLA | pyruvic acid | 0.7813 | LED λ > 420 nm (4 × 25 W) | [ |
13 | Ag2O/Fe-MOF | PET | formic acid, acetic acid | 1.9 | Xe lamp | [ |
14 | MoS2/Cd0.5Zn0.5S | PET | formate, methanol, actate ethanol | 15.9 | Xe lamp | [ |
Table 4 Recent research advancements in photocatalytic H2-evolution coupled with reforming of waste plastics.
No. | Photocatalyst | Substrate | Photoreforming | H2 evolution (mmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|---|
1 | CdS/CdOx | PLA | polylactic acid, polyethylene, terephthalate polyurethane | 64.3 | simulated solar light AM 1.5G | [ |
2 | CNx|Ni2P | PLA | acetate formate | 0.17 | simulated solar light AM 1.5G | [ |
3 | O-CuIn5S8 | PET | formate, acetate, glycolate | 2.57 | Xe lamp | [ |
4 | Pt/TiO2-x/Ti | plastic wastes | acetate, CH4, CO | 399.2 | Xe lamp 400-800 nm | [ |
5 | MCN | PET | aormate, lyoxal, acetate | 7.33 | Xe lamp 100 mW cm-2 | [ |
6 | d-NiPS3/CdS | PET | carbonate | 121.04 | Xe lamp λ > 400 nm | [ |
7 | MoS2/CdS | PLA | formate, lactate | 379.35 | Xe lamp | [ |
8 | M-2/Z0.6C0.4S | PET | glycolate, acetate, ethanol | 14.2 | Xe lamp λ > 420 nm | [ |
9 | CN-CNTs-NiMo | PLA | glyoxal, carboxylate | 0.09 | Xe lamp | [ |
10 | Pt-CdOx/CdS/SiC | PET | glycolate | 0.025 | Xe lamp | [ |
11 | 5.6LS-CZS | PET | glycolate, ethanol | 13.83 | Xe lamp | [ |
12 | Ni2P/ZnIn2S4 | PLA | pyruvic acid | 0.7813 | LED λ > 420 nm (4 × 25 W) | [ |
13 | Ag2O/Fe-MOF | PET | formic acid, acetic acid | 1.9 | Xe lamp | [ |
14 | MoS2/Cd0.5Zn0.5S | PET | formate, methanol, actate ethanol | 15.9 | Xe lamp | [ |
Fig. 12. (a) Schematic diagram of photoreforming of plastic on MoS2/CdS. Reprinted with permission from Ref. [97]. Copyright 2022, American Chemical Society. (b) Photoreforming of PET bottle over CN-CNTs-NM. (c) Schematic diagram of the process of photoreforming of PET on CN-CNTs-NM. Reprinted with permission from Ref. [99]. Copyright 2022, Elsevier. (d) Schematic diagram of the polymer photoreforming on CNx|Ni2P. Reprinted with permission from Ref. [16]. Copyright 2019, American Chemical Society. (e) Schematic diagram of photoreforming waste plastic. Reprinted with permission from Ref. [98]. Copyright 2021, Elsevier. (f) 1H NMR spectra of PLA cups and PET bottles following photoreforming. (g) Photograph of H2 evolution without and with illumination on d-NiPS3/CdS. (h) Schematic for charge transfer on d-NiPS3/CdS. Reprinted with permission from Ref. [15]. Copyright 2023, American Chemical Society.
No. | Photocatalyst | Pollutant | Light source | H2 evolution (μmol g-1 h-1) | Removal efficiency | Ref. |
---|---|---|---|---|---|---|
1 | Ag3PO4/CABBQDs/rGH | tetracycline hydrochloride | Xe lamp λ ≥ 420 nm | 994.30 | 89 | [ |
2 | g-C3N4/Mn0.25Cd0.75S | tetracycline | Xe lamp | 3140 | — | [ |
3 | RGO/Pt/ZnIn2S4 | organic amines | Xe lamp λ ≥ 420 nm | 1597 | — | [ |
4 | MOS2/SiO2/GO | CPBL | Xe lamp | 778 | 84.2 | [ |
5 | MoS2@CdS | amoxicillin | Xe lamp λ ≥ 420 nm | 87 | 16.4 | [ |
6 | Bi/C3N4 | amoxicillin | Xe lamp λ ≥ 420 nm | 718 | 5.3 | [ |
7 | ZIS/RGO/BiVO4 | formaldehyde | Xe lamp λ ≥ 420 nm | 1687 | 22.9 | [ |
8 | MoS2/ZnIn2S4 | bisphenol A | Xe lamp λ > 420 nm | 672.7 | 53 | [ |
9 | ACN-550 | bisphenol A | Xe lamp λ = 190-1100 nm | 761.8 ± 4.3 | 89 | [ |
10 | TOA-30 | rhodamine B | Xe lamp | 2370 | — | [ |
11 | CeO2/CueI-bpy-2.0 | rhodamine B | Xe lamp | 145 | — | [ |
12 | ZnIn2S4-WO3-4 | crystal violet | Xe lamp λ > 420 nm | 737.75 | >99.99 | [ |
13 | UiO-66@Zn0.5Cd0.5S | ciprofloxacin | Xe lamp | 224 | 83.6 | [ |
Table 5 Recent research advancements in photocatalytic H2-evolution coupled with organic pollutants degradation in wastewater.
No. | Photocatalyst | Pollutant | Light source | H2 evolution (μmol g-1 h-1) | Removal efficiency | Ref. |
---|---|---|---|---|---|---|
1 | Ag3PO4/CABBQDs/rGH | tetracycline hydrochloride | Xe lamp λ ≥ 420 nm | 994.30 | 89 | [ |
2 | g-C3N4/Mn0.25Cd0.75S | tetracycline | Xe lamp | 3140 | — | [ |
3 | RGO/Pt/ZnIn2S4 | organic amines | Xe lamp λ ≥ 420 nm | 1597 | — | [ |
4 | MOS2/SiO2/GO | CPBL | Xe lamp | 778 | 84.2 | [ |
5 | MoS2@CdS | amoxicillin | Xe lamp λ ≥ 420 nm | 87 | 16.4 | [ |
6 | Bi/C3N4 | amoxicillin | Xe lamp λ ≥ 420 nm | 718 | 5.3 | [ |
7 | ZIS/RGO/BiVO4 | formaldehyde | Xe lamp λ ≥ 420 nm | 1687 | 22.9 | [ |
8 | MoS2/ZnIn2S4 | bisphenol A | Xe lamp λ > 420 nm | 672.7 | 53 | [ |
9 | ACN-550 | bisphenol A | Xe lamp λ = 190-1100 nm | 761.8 ± 4.3 | 89 | [ |
10 | TOA-30 | rhodamine B | Xe lamp | 2370 | — | [ |
11 | CeO2/CueI-bpy-2.0 | rhodamine B | Xe lamp | 145 | — | [ |
12 | ZnIn2S4-WO3-4 | crystal violet | Xe lamp λ > 420 nm | 737.75 | >99.99 | [ |
13 | UiO-66@Zn0.5Cd0.5S | ciprofloxacin | Xe lamp | 224 | 83.6 | [ |
Fig. 13. (a) Proposed photocatalytic mechanism of RGO/ZnIn2S4. Reprinted with permission from Ref. [107]. Copyright 2019, American Chemical Society. (b) HPLC results of photocatalytic H2 evolution at different irradiation intervals. Reprinted with permission from Ref. [110]. Copyright 2018, Elsevier. (c) Mechanism of photocatalytic degradation of PHE and TC. (d) Time courses of PHE activity. (e) Photocatalytic degradation of TC. Reprinted with permission from Ref. [105]. Copyright 2022, Elsevier. (f) Mechanism of photocatalytic degradation of CPBL and H2 on MoS2/SiO2/GO. Reprinted with permission from Ref. [108]. Copyright 2022, American Chemical Society. (g,h) Schematic diagram of e- transfer. (i) Possible photocatalytic mechanisms. Reprinted with permission from Ref. [116]. Copyright 2023, Elsevier.
No. | Photocatalyst | H2 evolution (μmol g-1 h-1) | H2O2 production (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|
1 | PCN-10-CP-10 | 15.26 | 15.26 | Xe lamp | [ |
2 | Few-layer C60 | 91 | 116 | Xe lamp | [ |
3 | C-N-g-C3N4 | 0.84 | 0.98 | 420 nm ≤ λ ≤ 720nm | [ |
4 | ISQDs-2.25 | 42.17 | 36.85 | Xe lamp | [ |
5 | Pt-NaCN(6) | 900 | 880 | Xe lamp 400 < λ < 800 nm | [ |
6 | PAA/CoO-NC | 48.4 | 20.4 | AM 1.5 G | [ |
7 | ZCS/PO/Ni3Pi2 | 1464 | 1375 | Xe lamp λ ≥ 420 nm | [ |
8 | Ni2P/CDs | 258.6 | 1281.4 | λ > 420 nm | [ |
Table 6 Recent research advancements in photocatalytic H2-evolution coupled with H2O2 production.
No. | Photocatalyst | H2 evolution (μmol g-1 h-1) | H2O2 production (μmol g-1 h-1) | Light source | Ref. |
---|---|---|---|---|---|
1 | PCN-10-CP-10 | 15.26 | 15.26 | Xe lamp | [ |
2 | Few-layer C60 | 91 | 116 | Xe lamp | [ |
3 | C-N-g-C3N4 | 0.84 | 0.98 | 420 nm ≤ λ ≤ 720nm | [ |
4 | ISQDs-2.25 | 42.17 | 36.85 | Xe lamp | [ |
5 | Pt-NaCN(6) | 900 | 880 | Xe lamp 400 < λ < 800 nm | [ |
6 | PAA/CoO-NC | 48.4 | 20.4 | AM 1.5 G | [ |
7 | ZCS/PO/Ni3Pi2 | 1464 | 1375 | Xe lamp λ ≥ 420 nm | [ |
8 | Ni2P/CDs | 258.6 | 1281.4 | λ > 420 nm | [ |
Fig. 14. (a) The band alignment diagram of the prepared samples. (b) Schematic diagram of charge transfer mechanism. (c) Detailed transmission channels for electron transfer. Reprinted with permission from Ref. [121]. Copyright 2022, Elsevier. (d) Diagram of possible mechanism of H2 evolution and H2O2 production. Reprinted with permission from Ref. [123]. Copyright 2018, John Wiley and Sons. (e) Schematic diagram of overall water splitting on In2S3 and In2S3 QDs. Reprinted with permission from Ref. [124]. Copyright 2023, Elsevier. (f) Diagram of charge transfer. Reprinted with permission from Ref. [122]. Copyright 2023, John Wiley and Sons.
Fig. 15. (a) The sulfuration of Co/Cd-MOF into Co9S8/CdS heterostructure. (b) The mechanism over Co9S8/CdS. Reprinted with permission from Ref. [131] Copyright 2020 Elsevier B.V. (c) Rates of photocatalytic dehydrogenation of PhCH2OH for H2 evolution and PhCHO production. (d) Time-resolved PL decay plots. Reprinted with permission from Ref. [132]. Copyright 2020, Elsevier. (e) Transient photocurrent-time (I-t) curves. (f) EPR spectra of the prepared samples. (g) Band structure and possible reaction mechanism of CdS/BiVO4 hybrid products. Reprinted with permission from Ref. [69]. Copyright 2022, American Chemical Society.
Fig. 16. (a) Time courses of photocatalytic H2 evolution. (b) Band structures for pure g-C3N4. (c) Band structures for W doped g-C3N4. Reprinted with permission from Ref. [140]. Copyright 2021, Elsevier. (d) The UV-vis spectra. Reprinted with permission from Ref. [139]. Copyright 2017, Elsevier.
Fig. 17. (a) Illustration of synthesizing the Pd/HNb3O8 photocatalyst. (b) Production rates of H2 and benzaldehyde over photocatalysts. Reprinted with permission from Ref. [147]. Copyright 2021, Elsevier. (c) TEM images of FNS@ZIS-2. (d) N2 adsorption-desorption isotherms of ZIS. (e) N2 adsorption-desorption isotherms of FNS@ZIS-2. Reprinted with permission from Ref. [148]. Copyright 2020, Elsevier.
Fig. 18. (a) Comparison of photocatalytic H2 and PhCHO production rates of different photocatalyst. (b) The I-IEF formation by band bending and the charge transfer path at the NP/ZIS-O interface. (c) Schematic illustration for the photocatalytic mechanism of NP/ZIS-O. Reprinted with permission from Ref. [154]. Copyright 2022, John Wiley and Sons. (d) H2 evolution in the aqueous solution of FA. (e) TR-PL spectroscopy of samples. (f) Schematic diagram of ZnIn2S4 and Tp-Tta COF before/after contact and IEF formation and band bending. Reprinted with permission from Ref. [62]. Copyright 2012, Royal Society of Chemistry.
Fig. 19. (a) Synthesis process of Pt/TiO2-x/Ti. (b) H2 evolution rates of samples. (c) Diagram of reforming plastics for H2 evolution. The illustration is the finite-difference top domain (FDTD) result of a near-field electromagnetic field distribution at 785 nm. Reprinted with permission from Ref. [95]. Copyright 2023, Elsevier. (d) Piezotron effect that promotes light generation of e- and h+ separation. (e) Photocatalytic selective oxidation of aniline and H2 evolution. Reprinted with permission from Ref. [155]. Copyright 2021, Elsevier. (f) Schematic diagram of charge transfer on F-BiVO4@NiFe-LDH. Reprinted with permission from Ref. [156]. Copyright 2020, Elsevier. (g) Strategies for constructing TAPP-[2Fe2S]-CMP and possible structures of its functional sites. Reprinted with permission from Ref. [157]. Copyright 2023, Elsevier.
Fig. 20. (a) FTIR spectra of the Sn0.24-Ru0.68/TiO2 photocatalyst. (b) The EPR spectra. Reprinted with permission from Ref. [159]. Copyright 2013, Elsevier. (c) Composite diagram of RuO2@TiO2@Pt hollow sphere. (d) Charge transfer over RuO2@TiO2@Pt. Reprinted with permission from Ref. [160]. Copyright 2016, Elsevier.
Fig. 21. (a) UV-vis diffuse reflectance spectra of the samples. (b) The calculated band structures and partial densities. Reprinted with permission from Ref. [161]. Copyright 2019, Elsevier B.V. (c) ATR-FTIR spectra of SA-TiO2 and free SA. (d) The ESR spectra of 5-CH3O-SA-TiO2. Reprinted with permission from Ref. [163]. Copyright 2018, Elsevier B.V.
Fig. 22. (a) In situ DRIFTS measurement. Reprinted with permission from Ref. [83]. Copyright 2020, Wiley-VCH GmbH. (b) In situ FTIR spectra. Reprinted with permission from Ref. [92]. Copyright 2024, Elsevier Inc. (c) The schematic of the photoelectrochemical system with LSV-Raman analysis. (d) In situ Raman spectra. Reprinted with permission from Ref. [164]. Copyright 2020, Wiley-VCH Verlag GmbH. In situ irradiation XPS of (e) Zn 2p and (f) Ti 2p. Reprinted with permission from Ref. [46]. Copyright 2023, Wiley-VCH GmbH.
Fig. 23. (a) Cu2O structure change under irradiation. (b-d) In-situ TEM observation of Cu2O during photocatalytic H2 evolution process. Reprinted with permission from Ref. [165]. Copyright 2020, Elsevier B.V. (e) KPFM images of TF10 in darkness. (f) KPFM image of TF10 with 365-nm UV light illumination. Reprinted with permission from Ref. [4]. Copyright 2022, Wiley-VCH GmbH. (g) In situ XRD. Reprinted with permission from Ref. [166]. Copyright 2022, Wiley-VCH GmbH. (h) In-situ XANES spectra. (i) Least-squares curve-fitting analysis. Reprinted with permission from Ref. [167]. Copyright 2023, Springer Nature.
Fig. 24. (a) DMPO ESR spin-trapping for •O2-. (b) DMPO ESR spin-trapping for •OH. Reprinted with permission from Ref. [49]. Copyright 2021, Elsevier. (c) TEMPO ESR spectrum of h+. Reprinted with permission from Ref. [48]. Copyright 2022, Elsevier. (d) In situ ESR spectra for UCNT. Reprinted with permission from Ref. [12]. Copyright 2022, American Chemical Society. (e) Detected EPR signals. Reprinted with permission from Ref. [18]. Copyright 2024, American Chemical Society (f) In situ EPR spectra for CoP/CdS. Reprinted with permission from Ref. [168]. Copyright 2024, Wiley-VCH GmbH.
Fig. 25. (a) Charge density difference for NiCoFe-LDH@ZIS. Reprinted with permission from Ref. [90]. Copyright 2023, Elsevier. (b) Electron density difference and bader electron transfer on CdS/MoS2. Reprinted with permission from Ref. [56]. Copyright 2022, Wiley-VCH. (c) Calculated work functions of ZIS. Reprinted with permission from Ref. [169]. Copyright 2023, Elsevier B.V. (d) DFT simulated frontier orbitals of PCN-777. Reprinted with permission from Ref. [84]. Copyright 2018, Wiley-VCH. (e) Possible cyclic process and active site of the samples. Reprinted with permission from Ref. [170]. Copyright 2023, Springer Nature. (f) DFT-calculated energy diagram. Reprinted with permission from Ref. [171]. Copyright 2022, Elsevier B.V.
Fig. 26. (a) Photocatalytic reaction mechanism of RS/ZIS-Sv heterojunction. Reprinted with permission from Ref. [67]. Copyright 2022, Elsevier B.V. (b) The proposed mechanism for CdS(ZB)/CdS(WZ)/Ni-BTC. Reprinted with permission from Ref. [72]. Copyright 2021, Elsevier B.V. (c) The photocatalytic mechanism in ZnCo2S4/Zn0.2Cd0.8S heterojunction. Reprinted with permission from Ref. [130]. Copyright 2022, Elsevier Ltd. (d) Type-II transfer mechanism. (e) S-scheme transfer mechanism over Zn0.1Cd0.9S/MoO3-x. Reprinted with permission from Ref. [172]. Copyright 2022, Elsevier. B.V.
|
[1] | 付辉, 田金, 张倩倩, 郑昭科, 程合峰, 刘媛媛, 黄柏标, 王朋. 钴单原子修饰的石墨烯助催化剂用于提高卤化物钙钛矿光催化CO2还原活性[J]. 催化学报, 2024, 64(9): 143-151. |
[2] | 刘方璇, 孙彬, 刘子妍, 魏英勤, 高婷婷, 周国伟. 空位工程调控中空结构ZnO/ZnS S型异质结用于高效光催化产氢[J]. 催化学报, 2024, 64(9): 152-165. |
[3] | 林铮, 谢婉婷, 朱梦静, 汪长春, 郭佳. 二氧化硅支撑的平行堆叠排列手性共价有机框架促进光催化析氢[J]. 催化学报, 2024, 64(9): 87-97. |
[4] | 郎程广, 许彦桐, 姚向东. 通过缺陷优化析氢反应电催化剂: 最新研究进展与展望[J]. 催化学报, 2024, 64(9): 4-31. |
[5] | 陈春光, 张金锋, 褚海亮, 孙立贤, Graham Dawson, 代凯. 硫族化物基S型异质结光催化剂[J]. 催化学报, 2024, 63(8): 81-108. |
[6] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[7] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[8] | 王金龙, 刘东妮, 李铭洋, 谷骁一, 吴仕群, 张金龙. 通过金属空位工程促进CO2光还原[J]. 催化学报, 2024, 63(8): 202-212. |
[9] | 张棋祺, 苗慧, 王俊, 孙涛, 刘恩周. In2.77S4/K+掺杂g-C3N4自组装S型异质结光催化H2O和O2合成H2O2[J]. 催化学报, 2024, 63(8): 176-189. |
[10] | 李志鹏, 刘晓斌, 于青平, 屈欣悦, 万均, 肖振宇, 迟京起, 王磊. 用于高电流密度析氢反应电催化剂的研究进展[J]. 催化学报, 2024, 63(8): 33-60. |
[11] | 厉超, 王朔, 刘媛, 黄细河, 庄严, 吴舒鸿, 汪颖, 温娜, 吴凯丰, 丁正新, 龙金林. 共价有机框架双电场叠加实现高效光催化产氢[J]. 催化学报, 2024, 63(8): 164-175. |
[12] | 任卫杰, 李宁, 常青, 武杰, 杨金龙, 胡胜亮, 康振辉. 通过碳点从共价三嗪框架中提取光生空穴用于光合作用产过氧化氢[J]. 催化学报, 2024, 62(7): 178-189. |
[13] | 陈晓, 杜云梅, 杨宇, 刘康, 赵晋灵, 夏晓丹, 王磊. 安培级电流密度下淬火优化CoPS纳米棒的晶型/非晶型比例以促进肼辅助的全水分解[J]. 催化学报, 2024, 62(7): 265-276. |
[14] | 赵万成, 马加朋, 田栋, 康宝涛, 夏方诠, 成婧, 吴亚军, 王梦遥, 武刚. 集成有CNTs和Ni-Ni(OH)2异质结构的电解析氢自支撑薄膜催化剂[J]. 催化学报, 2024, 62(7): 287-295. |
[15] | 赵贵, 路宽, 李玉楠, 卢发贵, 高朋, 南兵, 李丽娜, 张熠霄, 徐鹏涛, 刘晰, 陈立桅. 一种高效稳定的高熵合金电催化剂用于析氢反应[J]. 催化学报, 2024, 62(7): 156-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||