催化学报 ›› 2025, Vol. 72: 199-210.DOI: 10.1016/S1872-2067(24)60287-1

• 论文 • 上一篇    下一篇

簇状Bi28O32(SO4)10原位Bi晶格畸变增强电催化CO2还原为甲酸

孙静涵a, 许峥嵘a, 刘邓a, 孔爱国b,*(), 张其春c,*(), 刘睿a,*()   

  1. a同济大学材料科学与工程学院, 先进土木工程材料教育部重点实验室, 上海 201804
    b华东师范大学化学与分子工程学院, 上海 200241
    c香港城市大学材料科学与工程学院, 香港 999077
  • 收稿日期:2024-12-04 接受日期:2025-02-03 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: agkong@chem.ecnu.edu.cn (孔爱国),qiczhang@cityu.edu.hk (张其春),ruiliu@tongji.edu.cn (刘睿).
  • 基金资助:
    中央高校基本科研业务费(22120230104)

In-situ distortion of Bi lattice in Bi28O32(SO4)10 cluster boosted electrocatalytic CO2 reduction to formate

Jinghan Suna, Zhengrong Xua, Deng Liua, Aiguo Kongb,*(), Qichun Zhangc,*(), Rui Liua,*()   

  1. aKey Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
    bSchool of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
    cDepartment of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
  • Received:2024-12-04 Accepted:2025-02-03 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: agkong@chem.ecnu.edu.cn (A. Kong), qiczhang@cityu.edu.hk (Q. Zhang), ruiliu@tongji.edu.cn (R. Liu).
  • Supported by:
    Fundamental Research Funds for the Central Universities(22120230104)

摘要:

利用可再生电力将二氧化碳还原(CO2RR)为甲酸等高附加值产物是一种高效的二氧化碳资源利用策略. 提高CO2RR性能的关键在于设计低成本、高性能的新型电催化剂, 同时显著抑制竞争性析氢反应(HER)的发生. 簇型催化剂因其独特的几何构型和电子结构以及多原子之间的协同作用, 受到越来越多的关注. 在电催化CO2RR过程中, 簇型催化剂的真实活性位点演变以及催化机理仍有待阐明. 因此, 设计高效的簇型电催化剂并探究其原位重构及催化机理是本文的主要研究内容.

本文通过在空气氛围中硫化煅烧铋-鞣花酸金属有机框架, 分别在500和600 °C煅烧制备了两种铋基化合物: 具有[Bi2O2]2+层状结构的Bi2O2SO4和具有[Bi14O16]10+簇的Bi28O32(SO4)10. 在H型电解池中测试了上述两种铋基化合物的电催化CO2RR性能. 结果表明, 簇状Bi28O32(SO4)10电催化剂在−0.9 VRHE到−1.3 VRHE的宽电位范围内实现了超过90%的甲酸法拉第效率(FEformate), 并在−1.1 VRHE时FEformate最高可达96.2%, 表现出比层状结构Bi2O2SO4更高的CO2RR性能. 原位表征技术、X射线衍射、透射电子显微镜、X射线光电子能谱及X射线吸收谱等测试结果证明了Bi28O32(SO4)10和Bi2O2SO4不同的原位重构过程对它们电催化性能差异的影响. 簇状的Bi28O32(SO4)10在CO2RR过程中经历了特殊的Bi28O32(SO4)10 → Bi−2.1/ Bi2O2CO3 → Bi−2.1/Bi−0.6两步重构过程, 即在第一步发生阴离子交换和原子重排得到了晶格畸变较高的金属Bi−2.1, 在第二步发生电化学还原又形成了晶格畸变较弱的金属Bi−0.6. 相比之下, Bi2O2SO4层状化合物在重构过程中只发生了阴离子交换生成了Bi2O2CO3, 并进一步还原为Bi−0.6. 通过密度泛函理论计算比较了这两种不同晶格应变铋(Bi−2.1和Bi−0.6)对电催化CO2RR性能的影响. 与弱晶格畸变的Bi−0.6相比, 高晶格畸变的Bi−2.1在CO₂吸附和活化过程中所需的吉布斯自由能更低, 从而更高效地促进甲酸生成. 同时, Bi−2.1对竞争性HER的抑制作用也显著增强. 原位表征和理论计算结果为簇状Bi28O32(SO4)10催化剂表现出更好CO2RR性能提供了进一步的理论支持.

综上, 本文为CO2RR提供了一种高效的无机簇型电催化剂, 并证明了具有Bi-O簇结构的化合物引发的原位重构过程可以调控金属Bi的非稳态程度进而提高CO2RR催化性能, 为从电化学重构角度设计新型电催化剂提供了一种新思路.

关键词: 无机金属氧簇, Bi28O32(SO4)10, 电催化CO2还原, 原位重构, 晶格应变

Abstract:

To convert carbon dioxide into high-value-added liquid products such as formate with renewable electricity (CO2RR) is a promising strategy of CO2 resource utilization. The key is to find a highly efficient and selective electrocatalyst for CO2RR. Herein, clustered Bi28O32(SO4)10 was found to show a high formate Faradaic efficiency (FEformate) of 96.2% at -1.1 VRHE and FEformate above 90% in a wide potential range from -0.9 to -1.3 VRHE in H-type cell, surpassing the corresponding layered Bi2O2SO4 (85.6% FEformate at -1.1 VRHE). The advantageous CO2RR performance of Bi28O32(SO4)10 over Bi2O2SO4 was ascribed to a special two-step in-situ reconstruction process, consisting of Bi28O32(SO4)10 → Bi-2.1/Bi2O2CO3 → Bi-2.1/Bi-0.6 during CO2RR. It gave metallic Bi-2.1 with lattice distortion of -2.1% at the first step and metallic Bi-0.6 with lattice distortion of -0.6% at the second step. In contrast, the usual layered Bi2O2SO4 only formed metallic Bi-0.6 with weaker lattice strain. The metallic Bi-2.1 revealed higher efficiency in stabilizing *CO2 intermediate and reducing the energy barrier of CO2RR, while suppressing hydrogen evolution reaction and CO formation. This work delivers a high-performance cluster-type Bi28O32(SO4)10 electrocatalyst for CO2RR, and elucidates the origin of superior performance of clustered Bi28O32(SO4)10 electrocatalysts compared with layered Bi2O2SO4.

Key words: Inorganic metal-oxygen clusters, Bi28O32(SO4)10, Electrocatalytic CO2 reduction, In-situ reconstruction, Lattice strain