催化学报 ›› 2025, Vol. 74: 329-340.DOI: 10.1016/S1872-2067(25)64740-1

• 论文 • 上一篇    下一篇

共价有机框架的双氧气还原中心促进光催化合成H2O2

吴崇备a,1, 楚飞鸿a,1, 郝永超c,1, 李璇a, 贾晓月a, 孙伊钒a, 谷佳璇a, 加鹏飞a, 王傲冰a, 江吉周b,*()   

  1. a河北科技工程职业技术大学, 河北省高校工业节能降耗与污染防治应用技术研发中心, 河北邢台 054000
    b武汉工程大学材料科学与工程学院, 磷矿及其共伴生资源绿色高效开发利用全国重点实验室, 磷资源开发利用教育部工程研究中心, 新型催化材料湖北省工程研究中心, 湖北武汉 430205
    c邢台学院化学工程与生物技术学院, 河北邢台 054000
  • 收稿日期:2025-02-06 接受日期:2025-03-31 出版日期:2025-07-18 发布日期:2025-07-20
  • 通讯作者: *电子信箱: 027wit@163.com (江吉周).
  • 作者简介:1共同第一作者.
  • 基金资助:
    河北省自然科学基金(B2023108012);河北省自然科学基金(A2023108002);河北省教育厅青年拔尖人才项目(BJK2024137);国家自然科学基金(62004143);湖北省重点研发计划(2022BAA084)

Dual O2 reduction centers of COFs boosting H2O2 photosynthesis

Chongbei Wua,1, Feihong Chua,1, Yongchao Haoc,1, Xuan Lia, Xiaoyue Jiaa, Yifan Suna, Jiaxuan Gua, Pengfei Jiaa, Aobing Wanga, Jizhou Jiangb,*()   

  1. aHebei Center for Industrial Energy-saving and Pollution Control Research, Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, Hebei, China
    bSchool of Materials Science and Engineering, State Key Laboratory of Green and Efficient Development of Phosphorus Resources, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
    cSchool of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, 054000, Hebei, China
  • Received:2025-02-06 Accepted:2025-03-31 Online:2025-07-18 Published:2025-07-20
  • Contact: *E-mail: 027wit@163.com (J. Jiang).
  • About author:1Contributed equally to this work.
  • Supported by:
    Hebei Province Natural Science Foundation(B2023108012);Hebei Province Natural Science Foundation(A2023108002);Science Research Project of Hebei Education Department(BJK2024137);National Natural Science Foundation of China(62004143);Key R&D Program of Hubei Province(2022BAA084)

摘要:

过氧化氢(H2O2)广泛应用于造纸、电子制造和废水处理等领域. 传统蒽醌氧化法生产H2O2存在高能耗、环境污染等问题. 相比之下, 利用太阳能、水和氧气作为原料的光催化生产H2O2已成为一种有前途的可持续替代方案. 目前, 石墨相氮化碳(g-C3N4)、共价有机框架(COFs)等无金属有机半导体材料因其可调的分子结构设计, 展现出高效的光催化性能. 尽管g-C3N4在光合成H2O2中表现优异, 但其缓慢的电荷动力学和有限的O2吸附活化位点限制了催化性能的提升. 因此, 利用COFs的分子结构可调性, 构筑具有高效的电荷转移动力学和双O2吸附活化位点的COFs光催化剂以实现高效光催化合成H2O2是本文的主要研究思路.

基于COFs分子结构中偶极矩的理论预测表明, 引入吡嗪单元显著增强电荷迁移, 促进光生电荷的富集, 从而推动双位点两电子氧还原反应(2e- ORR). 本文通过分子结构设计, 成功引入极性吡嗪单元, 构筑了三嗪-吡嗪交替排列的COFs光催化剂(TTDN-COFs), 其光催化合成H2O2的生成速率最高达到2757.6 µmol h-1 g-1. 理论计算和飞秒瞬态吸收光谱测试结果表明, 吡嗪单元的引入显著增强了材料的极化效应, 促进了光生载流子的分离, 并优化了电荷传输. 通过密度泛函理论(DFT)和时间依赖的密度泛函理论(TDDFT)计算得到的D-index进一步揭示了吡嗪单元引起的局部电荷极化效应, 显著提高了载流子分离与迁移能力. DFT计算表明, 三嗪和吡嗪位点不仅能够有效提高O2的吸附能力, 而且促进了光生电子在三嗪和吡嗪位点的富集, 从而实现了O2吸附的活化并构建了双位点反应机制. 结合原位红外光谱和DFT理论计算对催化机理分析, 吡嗪单元的引入有效降低了O2的活化反应能垒, 促进了三嗪和吡嗪位点上1,4-内过氧化物活性中间体的生成, 进一步提高了2e- ORR反应动力学和光催化效率. 以上结果表明, 功能基团介导的极化工程在开发基于COFs的H2O2光合反应中具有巨大潜力.

综上, 本研究在分子层面设计高性能无金属共价有机框架光催化剂提供了新思路, 并具有在人工光合作用和环境修复中的潜在应用.

关键词: 光催化合成过氧化氢, 三嗪-吡嗪基共价有机框架, 双活性位点, 极化效应

Abstract:

The two-electron oxygen reduction reaction (ORR) for H2O2 photosynthesis is often hindered by sluggish charge kinetics and a limited number of activation sites. Theoretical predictions based on dipole moment analysis indicate that introducing pyrazine units enhances charge migration, leading to increased accumulation of photoinduced electrons on these units, thereby facilitating the two-site, two-electron ORR. Inspired by these theoretical insights, this work designed and fabricated a triazine-pyrazine-based covalent organic framework materials (TTDN-COFs) for H2O2 photosynthesis via a polarity-functionalization strategy. The TTDN-COFs demonstrate a significant improvement in the photocatalytic H2O2 production rate, reaching 2757.6 μmol h-1 g-1 in pure water-3.2 times higher than that of the triazine-based COFs (TTPH-COFs). Experimental results and theoretical calculations confirm that the incorporation of pyrazine units not only enhances polarization, promoting the separation and migration of charge carriers, but also facilitates the formation of endoperoxide at both the triazine and pyrazine units. The dual adsorption activation sites lower the activation energy barrier for O2, thereby accelerating the overall reaction kinetics. These findings highlight the potential of functional-group-mediated polarization engineering as a promising strategy for developing COFs-based H2O2 photosynthesis with dual activation sites.

Key words: H2O2 photosynthesis, Triazine-pyrazine-based COFs, Dual activation sites, Polarization